Analysis of the RSG-GAS PPF Value Dependence on the Fuel Burnup
DOI:
https://doi.org/10.17146/tdm.2022.24.2.6616Keywords:
RSG-GAS reactor, Reactor operation, Equilibrium core, BATAN-3DIFF, PPF valueAbstract
The RSG-GAS reactor has been operated in a safe and reliable manner for about 35 years since it commenced its operation in 1987 to serve radioisotopes production, NAA, neutron beam experiments, material irradiation, and reactor physics experimental activities as well as training purposes. Power peaking factor (PPF) has a strong relation to operation safety as well as service availability. Its value is necessary to determine by calculation since it is impossible to determine it experimentally in the core. This paper is intended to analyze the PPF values of the RSG-GAS reactor core as a function of burnup. The analysis was done using WIMSD-5B/BATAN-3DIFF computer codes. The result shows that the PPF values are significantly different for each burnup or energy in MWD. The values of axial and radial PPF are still under the safety limit and the BATAN-3DIFF code satisfyingly determines the PPF values of the RSG-GAS reactor core and supports the safety of reactor operation.
References
Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.
https://doi.org/10.1504/IJNEST.2018.095689
Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.
https://doi.org/10.26740/jpfa.v9n1.p78-91
Liem P.H., Surbakti T., Hartanto D. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) using Continuous Energy Monte Carlo Method. Prog. Nucl. Energy. 2018. 109(June):196-203.
https://doi.org/10.1016/j.pnucene.2018.08.014
Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256-261.
https://doi.org/10.1016/j.apradiso.2016.06.031
Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27-32.
https://doi.org/10.1016/j.apradiso.2015.03.015
Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2):89-97.
https://doi.org/10.17146/aij.2018.545
Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2):69-79.
https://doi.org/10.17146/aij.2019.810
Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3):123-128.
https://doi.org/10.17146/aij.2016.532
Surbakti T., Pinem S., Sembiring T.M., Subekti M., Sunaryo G.R. Preliminary Study for Alternative Conceptual Core Design of the MTR Research Reactor. J. Phys. Conf. Ser. 2018. 962(1)
https://doi.org/10.1088/1742-6596/962/1/012032
Hedayat A. Benchmarking Verification of the Control Rod Effects on the MTR Core Parameters using the MTR-PC and MCNP Codes throughout 3D Core Modeling and Rod-drop Experiment. Prog. Nucl. Energy. 2016. 88:183-190.
https://doi.org/10.1016/j.pnucene.2015.12.001
Liu Z., Smith K., Forget B. Calculation of Multi-group Migration Areas in Deterministic Transport Simulations. Ann. Nucl. Energy. 2020. 140:107-110.
https://doi.org/10.1016/j.anucene.2019.107110
Wang C., Liu L., Liu M., Zhang D., Tian W., Qiu S., et al. Conceptual Design and Analysis of Heat Pipe Cooled Silo Cooling System for the Transportable Fluoride-salt-cooled High-temperature Reactor. Ann. Nucl. Energy. 2017. 109
https://doi.org/10.1016/j.anucene.2017.05.035
Pinem S., Liem P.H., Sembiring T.M., Surbakti T. Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core under a New Fuel Management Strategy. Ann. Nucl. Energy. 2016. 98
https://doi.org/10.1016/j.anucene.2016.08.010
Villarino E.A., Mochi I. Thermal-hydraulic Models for Neutronic and thermaly- hydraulic Feedback in Citvap Code. 2014. 23:23-36.
Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.
https://doi.org/10.26740/jpfa.v7n2.p89-101
Pinem S., Surbakti T., Sembiring T., et al. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia 2016. 1 (2):12-18.
Valtavirta V., Leppänen J., Viitanen T. Coupled Neutronics-fuel Behavior Calculations in Steady State using the Serpent 2 Monte Carlo Code. Ann. Nucl. Energy. 2017. 100