Analysis of Thorium Pin Cell Burnup of the PWR using WIMS Code

Authors

  • Jonny Haratua Panggabean Department of Physics, FMIPA, UNIMED
  • Santo Paulus Rajagukguk Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, BRIN
  • Syaiful Bakhri Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, BRIN

DOI:

https://doi.org/10.17146/tdm.2022.24.2.6626

Keywords:

Thorium, PWR Fuel, Burn up, Pin Cell, WIMSD-5B

Abstract

A thorium-fueled benchmark comparison was made in this study between state-of-the-art codes, WIMSD-5B code to MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations as an effort to examine the possible benefits of using thorium in PWR fuel. WIMSD-5B calculations employ the same model as a reference, while for MOCUP and CASMO, there are some differences in methodology and cross-section libraries. On a PWR pin cell model, eigenvalue and isotope concentrations were examined up to high burn-up. The eigenvalue comparison as a function of burn-up is in good agreement, with a maximum difference of less than 5% and an average absolute difference of less than 1%. The isotope concentration comparisons outperform a set of ThO2-UO2 fuel benchmarks and are comparable to a set of uranium fuel benchmarks previously published in the literature. As a burn-up function, the eigenvalue comparison is discussed in this paper. The actinide and fission product data sources for a typical thorium fuel are reported in the WIMSD-5B burnup calculations. The reasons for discrepancies in coding are examined and explored.

References

Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.

https://doi.org/10.1504/IJNEST.2018.095689

Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.

https://doi.org/10.26740/jpfa.v9n1.p78-91

Surian P., Tagor M. S., Tukiran S. Verifikasi Program PWR-fuel Dalam Manajemen Bahan Bakar PWR. JSTNI. 2015. 16(1): 53-62.

https://doi.org/10.17146/jstni.2015.16.1.2357

Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256-261.

https://doi.org/10.1016/j.apradiso.2016.06.031

Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27-32.

https://doi.org/10.1016/j.apradiso.2015.03.015

Surbakti T., Pinem S., Suparlina L. Dynamic Analysis of the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2):89-97.

https://doi.org/10.17146/aij.2018.545

Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indonesia. 2019. 45(2):69-79.

https://doi.org/10.17146/aij.2019.810

Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3):123-128.

https://doi.org/10.17146/aij.2016.532

Iman K., Surian P., Tagor M.S., and Tukiran S. Evaluation of Fuel Loading Pattern of PWR Core Using PWR-FUEL Code. : AIP Conference Proceedings. 2019. 2180,020007.

Hend S., Moustafa A., Riham R., Hesham M. Core Neutronic Characterization of Advanced Pressurized Water Reactor. Journal of Nuclear and Particle Physics. 2021. 11(1): 7-14.

Zakir, M., Sarkar M., and Hossain A. Analysis of Neutronics and Thermal-Hydraulic Behavior in a Fuel Pin of Pressurized Water Reactor (PWR). World Journal of Nuclear Science and Technology. 2019. 9: 74-83.

https://doi.org/10.4236/wjnst.2019.92005

Nicholas R.B., Hans L., Arnold A., Gilad R., Michael T. Neutronic Evaluation of a PWR with Fully Ceramic Microencapsulated Fuel. Part II: Nodal Core Calculations and Preliminary Study of Thermal-Hydraulic Feedback. Annals of Nuclear Energy. 2013. 62: 548-557.

https://doi.org/10.1016/j.anucene.2013.05.027

Pinem S., et al. PWR Fuel Macroscopic Cross Section Analysis for Calculation Core Fuel Management Benchmark. 2019. J. Phys.: Conf. Ser. 1198 022065.

https://doi.org/10.1088/1742-6596/1198/2/022065

Surian Pinem et al. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code. 2018. J. Phys.: Conf. Ser. 962 012057.

https://doi.org/10.1088/1742-6596/962/1/012057

Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.

https://doi.org/10.26740/jpfa.v7n2.p89-101

Michael A.P., Sen R. S., Abderrafi M.O., Gilles Y., Brian B. Neutronic Analysis of the Burning of Transuranics in Fully Ceramic Micro-encapsulated Tri-isotropic Particle-fuel in a PWR. Nuclear Engineering and Design. 2012. 252: 215-225.

https://doi.org/10.1016/j.nucengdes.2012.07.013

Pinem S., Surbakti T., Sembiring T., et al. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia. 2016. 1 (2):12-18.

Tukiran S, Surian P, Farisy Y. Calculation of PWR Thorium Pin Cell Burnup and Isotope Prediction Using WIMSD-5B Code. Journal of Physics: Conference Series 1811. 2021.

https://doi.org/10.1088/1742-6596/1811/1/012047

Downloads

Published

2022-07-19

How to Cite

Panggabean, J. H., Rajagukguk, S. P., & Bakhri, S. (2022). Analysis of Thorium Pin Cell Burnup of the PWR using WIMS Code. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 24(2), 67–74. https://doi.org/10.17146/tdm.2022.24.2.6626