RISK ASSESSMENT ON THE DECOMMISSIONING STAGE OF INDONESIAN TRIGA 2000 RESEARCH REACTOR

Authors

  • Ratih Luhuring Tyas Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN)
  • Deswandri Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN)
  • Dinnia Intaningrum Research Center for Safety, Metrology and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN)
  • Julwan Hendry Purba Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.17146/tdm.2022.24.2.6632

Keywords:

Safety assessment, Decommissioning, Hazard, Research Reactor, TRIGA 2000

Abstract

Decommissioning is the final stage of a nuclear reactor. In preparing the decommissioning plan, one of the important elements that need to be considered is safety assessment. During decommissioning, there are many complex tasks to be done where the radiological and non-radiological hazards arise and can significantly affect not only the workers but also the general public and the environment. Indonesia has no experience with nuclear reactor decommissioning, so it is necessary to study various experiences of decommissioning activities in the world. This study proposes a framework to implement the safety assessment on the decommissioning of the TRIGA 2000 research reactor. The framework was developed on desk-based research and analysis. The proposed framework involves the facility and decommissioning activities, hazard identification, hazard analysis, hazard evaluation, hazard or risk control, and independent review.

References

Volk R., Hübner F., Hünlich T., Schultmann F. The Future of Nuclear Decommissioning - A Worldwide Market Potential Study. Energy Policy. 2019. 124(August):226-61.

https://doi.org/10.1016/j.enpol.2018.08.014

Behling N., Behling T., Williams M., Managi S. Japan's Quest for Nuclear Energy and the Price It Has Paid.Elsevier. 2019.

Jarjies A., Abbas M., Fernandes H.M., Wong M., Coates R. Prioritization Methodology for the Decommissioning of Nuclear Facilities: a Study Case on the Iraq Former Nuclear Complex. J. Environ. Radioact. 2013. 119:70-8.

https://doi.org/10.1016/j.jenvrad.2012.01.001

Suh Y.A., Hornibrook C., Yim M.S. Decisions on Nuclear Decommissioning Strategies: Historical Review. Prog. Nucl. Energy. 2018. 106(February):34-43.

https://doi.org/10.1016/j.pnucene.2018.02.001

Lordan-Perret R., Sloan R.D., Rosner R. Decommissioning the U.S. Nuclear Fleet: Financial Assurance, Corporate Structures, and Bankruptcy. Energy Policy. 2021. 154:112280.

https://doi.org/10.1016/j.enpol.2021.112280

Budi Setiawan M., Kuntjoro S., Udiyani P.M., Husnayani I. Evaluation of Fuel Burn-up and Radioactivity Inventory in the 2 MW TRIGA-Plate Bandung Research Reactor. J. Phys. Conf. Ser. 2019. 1198(2)

https://doi.org/10.1088/1742-6596/1198/2/022017

Park B.I., Kim J.Y., Kim C.L. Suggestion of Risk Assessment Methodology for Decommissioning of Nuclear Power Plant. J. Nucl. Fuel Cycle Waste Technol. 2019. 17(1):95-106.

https://doi.org/10.7733/jnfcwt.2019.17.1.95

IAEA Decommissioning of Facilities. 2014:44.

IAEA Decommissioning of Nuclear Power Plants, Research Reactors and Other Nuclear Fuel Cycle Facilities. IAEA Saf. Stand. 2018. SSG-47.

Babilas E., Ušpuras E., Rimkevičius S., Dundulis G., Vaišnoras M. Safety Assessment of Low-contaminated Equipment Dismantling at Nuclear Power Plants. Sci. Technol. Nucl. Install. 2015. 2015(ii)

https://doi.org/10.1155/2015/650810

IAEA Safety Assessment for Decommissioning. Vienna, IAEA. 2013.

NEA Radiological Characterisation for Decommissioning of Nuclear Installations. Nucl. Energy Agency. 2013.(September):72.

Heriyanto K. Studi Karakterisasi Dismantling Program Dekomisioning Reaktor Triga Mark II Bandung. Semin. Nas. Teknol. Pengelolaan Limbah XIII. 2015.

Jeong J., Baik M.H., Kang M.J., Ahn H.J., Hwang D.S., Hong D.S., et al. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea. Nucl. Eng. Technol. 2016. 48(6):1368-75.

https://doi.org/10.1016/j.net.2016.05.003

Dibyo S., Pinem S., Wardhani V.I. Conceptual Design On N16 Decay Chamber For Modified TRIGA-2000 With Plate-Type Fuel. J. Pengemb. Energi Nukl. 2018. 20(1):25.

https://doi.org/10.17146/jpen.2018.20.1.4278

Adibeli J.O., Liu Y. kuo, Ayodeji A., Awodi N.J. Path Planning in Nuclear Facility Decommissioning: Research Status, Challenges, and Opportunities. Nucl. Eng. Technol. 2021. 53(11):3505-16.

https://doi.org/10.1016/j.net.2021.05.038

Rimkevičius S., Vaišnoras M., Babilas E., Ušpuras E. HAZOP Application for the Nuclear Power Plants Decommissioning Projects. Ann. Nucl. Energy. 2016. 94:461-71.

https://doi.org/10.1016/j.anucene.2016.04.027

Mokhtarname R., Safavi A.A., Urbas L., Salimi F., Zerafat M.M., Harasi N. Application of Multivariable Process Monitoring Techniques to HAZOP Studies of Complex Processes. J. Loss Prev. Process Ind. 2022. 74(September):104674.

https://doi.org/10.1016/j.jlp.2021.104674

Walker G., Cooper M., Thompson P., Jenkins D. Practitioner versus Analyst Methods: A Nuclear Decommissioning Case Study. Appl. Ergon. 2014. 45(6):1622-33.

https://doi.org/10.1016/j.apergo.2014.05.017

Ušpuras E., Rimkevičius S., Babilas E. Licensing Documentation and Licensing Process for Dismantling and Decontamination Projects in Lithuania. Prog. Nucl. Energy. 2015. 84:41-9.

https://doi.org/10.1016/j.pnucene.2015.03.020

Kim H., Lee D., Lee C.W., Kim H.R., Lee S.J. Safety Assessment Framework for Nuclear Power Plant Decommissioning Workers. IEEE Access. 2019. 7:76305-16.

https://doi.org/10.1109/ACCESS.2019.2907407

Jeong K.S., Choi B.S., Moon J.K., Hyun D.J., Kim G.H., Kim T.H., et al. Radiological Assessment for Decommissioning of Major Component in Nuclear Power Plants. Ann. Nucl. Energy. 2014. 63:571-4.

https://doi.org/10.1016/j.anucene.2013.08.032

Jeong K., Choi B., Moon J., Hyun D., Lee J., Kim I., et al. Establishment of the Hazard Reduction Methodology to be Taken into Account for Safety Assessment during Decommissioning of Nuclear Facilities. Ann. Nucl. Energy. 2016. 87(P2):7-15.

https://doi.org/10.1016/j.anucene.2015.08.008

Jeong K., Roh C., Yoon I.-H., Kim A., Lee J. Considerations on the Preliminary Safety Assessment for Operation of the Melting Facility for Radioactive Metal Waste from Nuclear Facilities. Ann. Nucl. Energy. 2022. 175:109213.

https://doi.org/10.1016/j.anucene.2022.109213

Purohit D., Siddiqui N., Nandan A., Yadav B. Hazard Identification and Risk Assessment in Petrochemical Industry. Int. J. Res. Appl. Sci. Eng. Technol. 2020. 8(9):778-83.

https://doi.org/10.22214/ijraset.2020.31583

Jeong K.S., Choi B.S., Moon J.K., Hyun D.J., Lee J.H., Kim G.H., et al. Risk Reduction Approach to Decommissioning Hazards of Nuclear Facilities. Ann. Nucl. Energy. 2014. 63:382-6.

https://doi.org/10.1016/j.anucene.2013.07.041

Awodi N.J., Liu Y.K., Ayodeji A., Adibeli J.O. Expert Judgement-based Risk Factor Identification and Analysis for an Effective Nuclear Decommissioning Risk Assessment Modeling. Prog. Nucl. Energy. 2021. 136(April):103733.

https://doi.org/10.1016/j.pnucene.2021.103733

Jeong K.S., Lee K.W., Moon J.K., Jeong S.Y., Lee J.J., Kim G.H., et al. Life Time Estimation of SSCs for Decommissioning Safety of Nuclear Facilities. Ann. Nucl. Energy. 2012. 46:244-7.

https://doi.org/10.1016/j.anucene.2012.03.001

Mercurio D., Andersen V.M., Wagner K.C. Integrated Level 1-Level 2 Decommissioning Probabilistic Risk Assessment for Boiling Water reactors. Nucl. Eng. Technol. 2018. 50(5):627-38.

https://doi.org/10.1016/j.net.2018.03.001

Kudo S., Sugihara T. Basic Concept of Safety Evaluation Method for Decommissioning of Nuclear Power Plants by Applying a Graded Approach. Nucl. Eng. Des. 2021. 379:111212.

https://doi.org/10.1016/j.nucengdes.2021.111212

Seo H.W., Yu J.H., Kim G.L., Son J.W. Preliminary ALARA Residual Radioactivity Levels for Kori-1 Decommissioning and Analysis of Results and Effects of Remediation Area. Nucl. Eng. Technol. 2022. 54(3):1136-44.

https://doi.org/10.1016/j.net.2021.09.022

Bednár D., Lištjak M., Slimák A., Nečas V. Comparison of Deterministic and Stochastic Methods for External Gamma Dose Rate Calculation in the Decommissioning of Nuclear Power Plants. Ann. Nucl. Energy. 2019. 134:67-76.

https://doi.org/10.1016/j.anucene.2019.06.003

Heo Y., Lee C., Kim H.R., Lee S.J. Framework for the Development of Guidelines for Nuclear Power Plant Decommissioning Workers based on Risk Information. Nucl. Eng. Des. 2022. 387(September ):111624.

https://doi.org/10.1016/j.nucengdes.2021.111624

Lee T., Yoon C., Jo S., Kim N. Performance Estimation of Lead-free Dual-layered Shielding in Dismantling of Steam Generator: A Monte-Carlo Simulation Study. Appl. Radiat. Isot. 2021. 176(October):109879.

https://doi.org/10.1016/j.apradiso.2021.109879

Badan Standardisasi Nasional Sistem Manajemen Keselamatan dan Kesehatan Kerja ( SMK3 ) - Persyaratan dan Pedoman Penggunaan ISO 450001:2018. 2019. 2018.

Downloads

Published

2022-07-19

How to Cite

Tyas, R. L., Deswandri, Intaningrum, D., & Purba, J. H. (2022). RISK ASSESSMENT ON THE DECOMMISSIONING STAGE OF INDONESIAN TRIGA 2000 RESEARCH REACTOR. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 24(2), 75–84. https://doi.org/10.17146/tdm.2022.24.2.6632