RISK ASSESSMENT ON THE DECOMMISSIONING STAGE OF INDONESIAN TRIGA 2000 RESEARCH REACTOR
DOI:
https://doi.org/10.17146/tdm.2022.24.2.6632Keywords:
Safety assessment, Decommissioning, Hazard, Research Reactor, TRIGA 2000Abstract
Decommissioning is the final stage of a nuclear reactor. In preparing the decommissioning plan, one of the important elements that need to be considered is safety assessment. During decommissioning, there are many complex tasks to be done where the radiological and non-radiological hazards arise and can significantly affect not only the workers but also the general public and the environment. Indonesia has no experience with nuclear reactor decommissioning, so it is necessary to study various experiences of decommissioning activities in the world. This study proposes a framework to implement the safety assessment on the decommissioning of the TRIGA 2000 research reactor. The framework was developed on desk-based research and analysis. The proposed framework involves the facility and decommissioning activities, hazard identification, hazard analysis, hazard evaluation, hazard or risk control, and independent review.
References
Volk R., Hübner F., Hünlich T., Schultmann F. The Future of Nuclear Decommissioning - A Worldwide Market Potential Study. Energy Policy. 2019. 124(August):226-61.
https://doi.org/10.1016/j.enpol.2018.08.014
Behling N., Behling T., Williams M., Managi S. Japan's Quest for Nuclear Energy and the Price It Has Paid.Elsevier. 2019.
Jarjies A., Abbas M., Fernandes H.M., Wong M., Coates R. Prioritization Methodology for the Decommissioning of Nuclear Facilities: a Study Case on the Iraq Former Nuclear Complex. J. Environ. Radioact. 2013. 119:70-8.
https://doi.org/10.1016/j.jenvrad.2012.01.001
Suh Y.A., Hornibrook C., Yim M.S. Decisions on Nuclear Decommissioning Strategies: Historical Review. Prog. Nucl. Energy. 2018. 106(February):34-43.
https://doi.org/10.1016/j.pnucene.2018.02.001
Lordan-Perret R., Sloan R.D., Rosner R. Decommissioning the U.S. Nuclear Fleet: Financial Assurance, Corporate Structures, and Bankruptcy. Energy Policy. 2021. 154:112280.
https://doi.org/10.1016/j.enpol.2021.112280
Budi Setiawan M., Kuntjoro S., Udiyani P.M., Husnayani I. Evaluation of Fuel Burn-up and Radioactivity Inventory in the 2 MW TRIGA-Plate Bandung Research Reactor. J. Phys. Conf. Ser. 2019. 1198(2)
https://doi.org/10.1088/1742-6596/1198/2/022017
Park B.I., Kim J.Y., Kim C.L. Suggestion of Risk Assessment Methodology for Decommissioning of Nuclear Power Plant. J. Nucl. Fuel Cycle Waste Technol. 2019. 17(1):95-106.
https://doi.org/10.7733/jnfcwt.2019.17.1.95
IAEA Decommissioning of Facilities. 2014:44.
IAEA Decommissioning of Nuclear Power Plants, Research Reactors and Other Nuclear Fuel Cycle Facilities. IAEA Saf. Stand. 2018. SSG-47.
Babilas E., Ušpuras E., Rimkevičius S., Dundulis G., Vaišnoras M. Safety Assessment of Low-contaminated Equipment Dismantling at Nuclear Power Plants. Sci. Technol. Nucl. Install. 2015. 2015(ii)
https://doi.org/10.1155/2015/650810
IAEA Safety Assessment for Decommissioning. Vienna, IAEA. 2013.
NEA Radiological Characterisation for Decommissioning of Nuclear Installations. Nucl. Energy Agency. 2013.(September):72.
Heriyanto K. Studi Karakterisasi Dismantling Program Dekomisioning Reaktor Triga Mark II Bandung. Semin. Nas. Teknol. Pengelolaan Limbah XIII. 2015.
Jeong J., Baik M.H., Kang M.J., Ahn H.J., Hwang D.S., Hong D.S., et al. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea. Nucl. Eng. Technol. 2016. 48(6):1368-75.
https://doi.org/10.1016/j.net.2016.05.003
Dibyo S., Pinem S., Wardhani V.I. Conceptual Design On N16 Decay Chamber For Modified TRIGA-2000 With Plate-Type Fuel. J. Pengemb. Energi Nukl. 2018. 20(1):25.
https://doi.org/10.17146/jpen.2018.20.1.4278
Adibeli J.O., Liu Y. kuo, Ayodeji A., Awodi N.J. Path Planning in Nuclear Facility Decommissioning: Research Status, Challenges, and Opportunities. Nucl. Eng. Technol. 2021. 53(11):3505-16.
https://doi.org/10.1016/j.net.2021.05.038
Rimkevičius S., Vaišnoras M., Babilas E., Ušpuras E. HAZOP Application for the Nuclear Power Plants Decommissioning Projects. Ann. Nucl. Energy. 2016. 94:461-71.
https://doi.org/10.1016/j.anucene.2016.04.027
Mokhtarname R., Safavi A.A., Urbas L., Salimi F., Zerafat M.M., Harasi N. Application of Multivariable Process Monitoring Techniques to HAZOP Studies of Complex Processes. J. Loss Prev. Process Ind. 2022. 74(September):104674.
https://doi.org/10.1016/j.jlp.2021.104674
Walker G., Cooper M., Thompson P., Jenkins D. Practitioner versus Analyst Methods: A Nuclear Decommissioning Case Study. Appl. Ergon. 2014. 45(6):1622-33.
https://doi.org/10.1016/j.apergo.2014.05.017
Ušpuras E., Rimkevičius S., Babilas E. Licensing Documentation and Licensing Process for Dismantling and Decontamination Projects in Lithuania. Prog. Nucl. Energy. 2015. 84:41-9.
https://doi.org/10.1016/j.pnucene.2015.03.020
Kim H., Lee D., Lee C.W., Kim H.R., Lee S.J. Safety Assessment Framework for Nuclear Power Plant Decommissioning Workers. IEEE Access. 2019. 7:76305-16.
https://doi.org/10.1109/ACCESS.2019.2907407
Jeong K.S., Choi B.S., Moon J.K., Hyun D.J., Kim G.H., Kim T.H., et al. Radiological Assessment for Decommissioning of Major Component in Nuclear Power Plants. Ann. Nucl. Energy. 2014. 63:571-4.
https://doi.org/10.1016/j.anucene.2013.08.032
Jeong K., Choi B., Moon J., Hyun D., Lee J., Kim I., et al. Establishment of the Hazard Reduction Methodology to be Taken into Account for Safety Assessment during Decommissioning of Nuclear Facilities. Ann. Nucl. Energy. 2016. 87(P2):7-15.
https://doi.org/10.1016/j.anucene.2015.08.008
Jeong K., Roh C., Yoon I.-H., Kim A., Lee J. Considerations on the Preliminary Safety Assessment for Operation of the Melting Facility for Radioactive Metal Waste from Nuclear Facilities. Ann. Nucl. Energy. 2022. 175:109213.
https://doi.org/10.1016/j.anucene.2022.109213
Purohit D., Siddiqui N., Nandan A., Yadav B. Hazard Identification and Risk Assessment in Petrochemical Industry. Int. J. Res. Appl. Sci. Eng. Technol. 2020. 8(9):778-83.
https://doi.org/10.22214/ijraset.2020.31583
Jeong K.S., Choi B.S., Moon J.K., Hyun D.J., Lee J.H., Kim G.H., et al. Risk Reduction Approach to Decommissioning Hazards of Nuclear Facilities. Ann. Nucl. Energy. 2014. 63:382-6.
https://doi.org/10.1016/j.anucene.2013.07.041
Awodi N.J., Liu Y.K., Ayodeji A., Adibeli J.O. Expert Judgement-based Risk Factor Identification and Analysis for an Effective Nuclear Decommissioning Risk Assessment Modeling. Prog. Nucl. Energy. 2021. 136(April):103733.
https://doi.org/10.1016/j.pnucene.2021.103733
Jeong K.S., Lee K.W., Moon J.K., Jeong S.Y., Lee J.J., Kim G.H., et al. Life Time Estimation of SSCs for Decommissioning Safety of Nuclear Facilities. Ann. Nucl. Energy. 2012. 46:244-7.
https://doi.org/10.1016/j.anucene.2012.03.001
Mercurio D., Andersen V.M., Wagner K.C. Integrated Level 1-Level 2 Decommissioning Probabilistic Risk Assessment for Boiling Water reactors. Nucl. Eng. Technol. 2018. 50(5):627-38.
https://doi.org/10.1016/j.net.2018.03.001
Kudo S., Sugihara T. Basic Concept of Safety Evaluation Method for Decommissioning of Nuclear Power Plants by Applying a Graded Approach. Nucl. Eng. Des. 2021. 379:111212.
https://doi.org/10.1016/j.nucengdes.2021.111212
Seo H.W., Yu J.H., Kim G.L., Son J.W. Preliminary ALARA Residual Radioactivity Levels for Kori-1 Decommissioning and Analysis of Results and Effects of Remediation Area. Nucl. Eng. Technol. 2022. 54(3):1136-44.
https://doi.org/10.1016/j.net.2021.09.022
Bednár D., Lištjak M., Slimák A., Nečas V. Comparison of Deterministic and Stochastic Methods for External Gamma Dose Rate Calculation in the Decommissioning of Nuclear Power Plants. Ann. Nucl. Energy. 2019. 134:67-76.
https://doi.org/10.1016/j.anucene.2019.06.003
Heo Y., Lee C., Kim H.R., Lee S.J. Framework for the Development of Guidelines for Nuclear Power Plant Decommissioning Workers based on Risk Information. Nucl. Eng. Des. 2022. 387(September ):111624.
https://doi.org/10.1016/j.nucengdes.2021.111624
Lee T., Yoon C., Jo S., Kim N. Performance Estimation of Lead-free Dual-layered Shielding in Dismantling of Steam Generator: A Monte-Carlo Simulation Study. Appl. Radiat. Isot. 2021. 176(October):109879.
https://doi.org/10.1016/j.apradiso.2021.109879
Badan Standardisasi Nasional Sistem Manajemen Keselamatan dan Kesehatan Kerja ( SMK3 ) - Persyaratan dan Pedoman Penggunaan ISO 450001:2018. 2019. 2018.