The Assessment of the Safety Operation of RSG-GAS Reactor for Radioisotope Target Irradiation

Authors

  • Iman Kuntoro Research Center for Nuclear Reactor Technology, ORTN, BRIN
  • Lily Suparlina Research Center for Nuclear Reactor Technology, ORTN, BRIN
  • Purwadi Purwadi Directorate of Nuclear Facility Operation, ORTN, BRIN

DOI:

https://doi.org/10.17146/tdm.2022.24.2.6634

Keywords:

RSG-GAS reactor, Operation safety, Target irradiation, Radioisotope production, Utilization

Abstract

The RSG-GAS multipurpose reactor is operated to serve the utilization in the field of radioisotope production, neutron activation analysis (NAA), and material research. The reactor actually has the power of 30 MW thermal, but upon considerations of efficiency and of most user’s requirements, the reactor is mostly operated at the power of 15 MW thermal, 5 days a week to produce a primary radioisotope from the target of 2 grams U-235. To ensure safe operation and optimum utilization, a safety procedure was established. The paper is intended to assess the operation safety in serving radioisotope target irradiation at its cycle operation. The assessment was carried out for core numbers 102 – 105. The result shows that excess reactivity and shutdown margin reactivity are safe to provide the target irradiation in the core for each cycle operation.

References

PRSG BATAN, Safety Analysis Report RSGGAS Rev. 11, 2018

Kuntoro I., Pinem S., Sembiring T. M., Haryanto D., and Purwanto S. Evaluation of Equilibrium Core Operation of the RSG-GAS Reactor. J. Teknol. Reakt. Nukl. Tri Dasa Mega. 2021. 23:15-20.

https://doi.org/10.17146/tdm.2021.23.1.6150

Pinem S., Sembiring T.M. Accuracy of Batan3DIFF and MCNP6 Codes for Thermal Neutron Flux Distribution at the Irradiation Position of RSG-GAS Reactor. International Journal of Nuclear Energy Science and Technology. 2019. 13(4):295-312.

https://doi.org/10.1504/IJNEST.2019.10027839

Hedayat A. Conceptual Analyses of Equilibrium Conditions to Determine a Longterm Fuel Management Strategy for Research Reactors. Progress in Nuclear Energy. 2014. 71:61-72.

https://doi.org/10.1016/j.pnucene.2013.10.020

Nissan E. An Overview of AI Methods for Incore Fuel Management: Tools for the Automatic Design of Nuclear Reactor Core Configurations for Fuel Reload, (Re)arranging New and Partly Spent Fuel. Designs. 2019. 3(3):1-45.

https://doi.org/10.3390/designs3030037

Pinem S., Liem P.H., Sembiring T.M., Surbakti T. Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core under a New Fuel Management Strategy. Annals of Nuclear Energy. 2016. 98

https://doi.org/10.1016/j.anucene.2016.08.010

Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. Atom Indonesia. 2016. 42(3):123-8.

https://doi.org/10.17146/aij.2016.532

PRSG-BATAN, Safety Analyses of Iridium Target Irradiation and FPM (6 g) in the Core of RSG-GAS. Rev. 1, 2018.

PRSG BATAN, Standard Operating Procedure for Acceptance of Irradiation Target, 2018.

PRSG BATAN, Safety Assessment of Gd2O3 Target Irradiation, 2012.

PRSG BATAN, Safety Assessment of SnO2 Target Irradiation, 2012

PRSG-BATAN, RSG-Batan Operation Report Core No.102-104, of the RSG-GAS Reactor, 2021

PRSG-BATAN, RSG-Batan Operation Report Core No. 105 of the RSG-GAS Reactor, 2022

Hastuti, E. P., Kuntoro, I., Suwoto, S., Syarip, S., Basuki, P., Surbakti, T., Sudarmono, S. Map of Radioisotope Production and Batan Research Reactor Utilization. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 2021 23(3), 105-114.

https://doi.org/10.17146/tdm.2021.23.3.6288

Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.

https://doi.org/10.1504/IJNEST.2018.095689

Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSGGAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.

https://doi.org/10.26740/jpfa.v9n1.p78-91

Liem P.H., Surbakti T., Hartanto D. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) using Continuous Energy Monte Carlo Method. Prog. Nucl. Energy. 2018. 109(June):196-203.

https://doi.org/10.1016/j.pnucene.2018.08.014

Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256- 261.

https://doi.org/10.1016/j.apradiso.2016.06.031

Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27-32.

https://doi.org/10.1016/j.apradiso.2015.03.015

Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2):89-97.

https://doi.org/10.17146/aij.2018.545

Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2):69-79.

https://doi.org/10.17146/aij.2019.810

Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. Atom Indones. 2016. 42(3):123-128.

https://doi.org/10.17146/aij.2016.532

Surbakti T., Pinem S., Sembiring T.M., Subekti M., Sunaryo G.R. Preliminary Study for Alternative Conceptual Core Design of the MTR Research Reactor. J. Phys. Conf. Ser. 2018. 962(1).

https://doi.org/10.1088/1742-6596/962/1/012032

Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSGGAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.

https://doi.org/10.26740/jpfa.v7n2.p89-101

Hedayat A. Benchmarking Verification of the Control Rod Effects on the MTR Core Parameters using the MTR-PC and MCNP Codes throughout 3D Core Modeling and Roddrop Experiment. Prog. Nucl. Energy. 2016. 88:183-190.

https://doi.org/10.1016/j.pnucene.2015.12.001

Liu Z., Smith K., Forget B. Calculation of Multi-group Migration Areas in Deterministic Transport Simulations. Ann. Nucl. Energy. 2020. 140:107-110.

https://doi.org/10.1016/j.anucene.2019.107110

Wang C., Liu L., Liu M., Zhang D., Tian W., Qiu S., et al. Conceptual Design and Analysis of Heat Pipe Cooled Silo Cooling System for the Transportable Fluoride-salt-cooled Hightemperature Reactor. Ann. Nucl. Energy. 2017. 109

https://doi.org/10.1016/j.anucene.2017.05.035

Villarino E.A., Mochi I. Thermal-hydraulic Models for Neutronic and thermaly- hydraulic Feedback in Citvap Code. 2014. 23:23-36.

Pinem S., Surbakti T., Sembiring T. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia 2016. 1 (2):12-18.

Valtavirta V., Leppänen J., Viitanen T. Coupled Neutronics-fuel Behavior Calculations in Steady State using the Serpent 2 Monte Carlo Code. Ann. Nucl. Energy. 2017. 100.

https://doi.org/10.1016/j.anucene.2016.10.015

Downloads

Published

2022-07-19

How to Cite

Kuntoro, I., Suparlina, L., & Purwadi, P. (2022). The Assessment of the Safety Operation of RSG-GAS Reactor for Radioisotope Target Irradiation. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 24(2), 85–92. https://doi.org/10.17146/tdm.2022.24.2.6634