Neutronic Analysis of the VVER-1200 Lattice cell fuel using WIMSD-5B Code
DOI:
https://doi.org/10.17146/tdm.2022.24.3.6697Keywords:
Neutronic analysis, Safety parameters, VVER-1200, WIMSD-5 code, Lattice cellAbstract
The calculation of safety parameters in nuclear reactors has an important influence on nuclear reactor control and safety. The infinite multiplication factor, reactivity coefficients, and power peaking factor parameters are the most important safety parameters for determining reactor status. The aim of the present study is to analyze the behavior of the nuclear safety parameters for the VVER-1200 core in a normal state of reactor operation. A lattice cell fuel model of the VVER-1200 reactor core was performed using WIMSD-5B. The cross-section library data based on the ENDF/B-VIII.0 was used. The investigated parameters were the value of infinite multiplication factor with different pitch, temperature, enrichment, and boron concentration. The calculation also investigated the reactivity coefficient parameters. The verification of WIMS model VVER-1200 was performed by comparing the results of the WIMSD-5B code with VVER-1200 data in the SAR document, and it was implied that they are in good agreement. The calculated values of reactivity coefficients illustrated a safe behavior.
References
Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.
https://doi.org/10.1504/IJNEST.2018.095689
Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.
https://doi.org/10.26740/jpfa.v9n1.p78-91
Surian P., Tagor M. S., Tukiran S. Verifikasi Program PWR-fuel Dalam Manajemen Bahan Bakar PWR. JSTNI. 2015. 16(1): 53-62.
https://doi.org/10.17146/jstni.2015.16.1.2357
Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256-261.
https://doi.org/10.1016/j.apradiso.2016.06.031
Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27-32.
https://doi.org/10.1016/j.apradiso.2015.03.015
Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2):89-97.
https://doi.org/10.17146/aij.2018.545
Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indonesia. 2019. 45(2):69-79.
https://doi.org/10.17146/aij.2019.810
Tukiran S, Surian P, Farisy Y. Calculation of PWR Thorium Pin Cell Burnup and Isotope Prediction Using WIMSD-5B Code. Journal of Physics: Conference Series 1811. 2021. 012047.
https://doi.org/10.1088/1742-6596/1811/1/012047
Iman K., Surian P., Tagor M.S., and Tukiran S. Evaluation of Fuel Loading Pattern of PWR Core Using PWR-FUEL Code. : AIP Conference Proceedings. 2019. 2180,020007.
Hend S., Moustafa A., Riham R., Hesham M. Core Neutronic Characterization of Advanced Pressurized Water Reactor. Journal of Nuclear and Particle Physics. 2021. 11(1): 7-14.
Zakir, M., Sarkar M., and Hossain A. Analysis of Neutronics and Thermal-Hydraulic Behavior in a Fuel Pin of Pressurized Water Reactor (PWR). World Journal of Nuclear Science and Technology. 2019. 9: 74-83.
https://doi.org/10.4236/wjnst.2019.92005
Nicholas R.B., Hans L., Arnold A., Gilad R., Michael T. Neutronic Evaluation of a PWR with Fully Ceramic Microencapsulated Fuel. Part II: Nodal Core Calculations and Preliminary Study of Thermal-Hydraulic Feedback. Annals of Nuclear Energy. 2013. 62: 548-557.
https://doi.org/10.1016/j.anucene.2013.05.027
Pinem S., et al. PWR Fuel Macroscopic Cross Section Analysis for Calculation Core Fuel Management Benchmark. 2019. J. Phys.: Conf. Ser. 1198 022065.
https://doi.org/10.1088/1742-6596/1198/2/022065
Surian Pinem et al. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code. 2018. J. Phys.: Conf. Ser. 962 012057.
https://doi.org/10.1088/1742-6596/962/1/012057
Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.
https://doi.org/10.26740/jpfa.v7n2.p89-101
Michael A.P., Sen R. S., Abderrafi M.O., Gilles Y., Brian B. Neutronic Analysis of the Burning of Transuranics in Fully Ceramic Micro-encapsulated Tri-isotropic Particle-fuel in a PWR. Nuclear Engineering and Design. 2012. 252: 215-225.
https://doi.org/10.1016/j.nucengdes.2012.07.013
Pinem S., Surbakti T., Sembiring T., et al. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia. 2016. 1 (2):12-18.
Mohammed S. D., Alya A. B., Hanaa H. A., Ibrahim A. E. Investigation of Different Scenarios of Thorium-Uranium Fuel Distribution in the VVER-1200 First Core. Ann. Nucl. Energy 2015.