Analysis of Neutron Absorber Materials on the Safety Parameters in the RSG-GAS Reactor
DOI:
https://doi.org/10.17146/tdm.2021.23.2.6278Keywords:
Silicide fuel, Neutron absorber, Safety parameters, AgInCd, B4C, Hf materialAbstract
The shutdown system in the core of the RSG-GAS reactor uses a neutron absorber material. Research reactors in the world often use 3 kinds of neutron absorber materials, namely AgInCd, B4C, and Hf. In this research, a neutron absorber analysis was carried out on the neutronic safety parameters for the RSG-GAS reactor core. Neutronic safety parameters for various kinds of neutron absorbing materials in the existing RSG-GAS core have never been carried out. The neutronic safety parameters are keff, neutron flux, core excess reactivity, shutdown margin, control rod total reactivity value, and PPF. A 250 gram silicide fuel was selected as a case study to see the possibility of a better neutron absorber material. In a three-dimensional diffusion model, four groups of neutron energies are selected for the computation of the core. The WIMSD-5B and Batan-3DIFF computer programs were used to perform this calculation. The calculation result shows that the largest shutdown margin value using B4C neutron absorber material; whereas the lowest PPF was obtained using Hf neutron absorbing material. The greatest power density values are in the fuel area around the CIP (center irradiation position), surrounded by the control fuel element, and the standard fuel element beside the berrylium reflector. The largest and smallest fluctuations in power density were obtained using neutron absorber materials B4C and AgInCd, respectively.
References
Iliyasu U., Ibrahim Y. V, Umar S., Agbo S.A., Jibrin Y. An Investigation of Reactivity Efect Due to Inadvertent Filling of the Irradiation Channels with Water in NIRR-1 Nigeria Research Reactor-1. Appl. Radiat. Isot. 2017. 123: 11-16.
https://doi.org/10.1016/j.apradiso.2017.02.008
Dawahra S., Khattab K., Saba G. A Comparative Study of the Neutron Flux Spectra in the MNSR Irradiation Sites for the HEU and LEU Cores Using the MCNP4C Code. Appl. Radiat. Isot. 2015. 104: 67-73.
https://doi.org/10.1016/j.apradiso.2015.06.006
Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101: 27-32.
https://doi.org/10.1016/j.apradiso.2015.03.015
Liem P.H., Surbakti T., Hartanto D. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) Using Continuous Energy Monte Carlo Method. Prog. Nucl. Energy. 2018. 109: 196-203.
https://doi.org/10.1016/j.pnucene.2018.08.014
Tashakor S., Zarifi E., Naminazari M. Neutronic Simulation of CAREM-25 Small Modular Reactor. Prog. Nucl. Energy. 2017. 99: 185-195.
https://doi.org/10.1016/j.pnucene.2017.05.016
Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indones. 2018. 44(2): 89-97.
https://doi.org/10.17146/aij.2018.545
Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung Using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3): 222-238.
https://doi.org/10.1504/IJNEST.2018.10016738
Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1): 78-91.
https://doi.org/10.26740/jpfa.v9n1.p78-91
Savva P., Varvayanni M., Catsaros N. Dependence of Control Rod Worth on Fuel Burnup. Nucl. Eng. Des. 2011. 241(2): 492-497.
https://doi.org/10.1016/j.nucengdes.2010.11.021
Kazeminejad H. Thermal-hydraulic Modeling of Reactivity Insertion in a Research Reactor. Ann. Nucl. Energy. 2012. 45: 59-67.
https://doi.org/10.1016/j.anucene.2012.02.017
Rahimi G., Nematollahi M.R., Hadad K., Rabiee A. Conceptual Design of a High Neutron Flux Research Reactor Core with Low Enriched Uranium Fuel and Low Plutonium Production. Nucl. Eng. Technol. 2020. 52(3): 499-507.
https://doi.org/10.1016/j.net.2019.09.002
Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core Using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2): 69-79.
https://doi.org/10.17146/aij.2019.810
Surbakti T., Pinem S., Sembiring T.M., Subekti M., Sunaryo G.R. Preliminary Study for Alternative Conceptual Core Design of the MTR Research Reactor. J. Phys. Conf. Ser. 2018. 962(1)
https://doi.org/10.1088/1742-6596/962/1/012032
Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3): 123-128.
https://doi.org/10.17146/aij.2016.532
Pinem S., Liem P.H., Sembiring T.M., Surbakti T. Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core Under a New Fuel Management Strategy. Ann. Nucl. Energy. 2016. 98: 211-217.
https://doi.org/10.1016/j.anucene.2016.08.010
Surbakti T., Imron M. Fuel Burn-Up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2): 89-101.
https://doi.org/10.26740/jpfa.v7n2.p89-101
Sheets N.D., Brookhaven M., Mughabghab S., National B., Talou P., National L.A., et al. ENDF / B-VII . 1 Nuclear Data for Science and Technology : Cross Sections , Covariances , Fission Product Yields and Decay. 2017.