The Study of Atmospheric Dispersion Model on Accident Scenario of Research Reactor G. A. Siwabessy using HotSpot Codes as A Nuclear Emergency Decision Support System

Authors

  • Arif Yuniarto Center for Informatics and Nuclear Strategic Zone Utilization, National Nuclear Energy Agency
  • Moh Cecep Cepi Hikmat Center for Informatics and Nuclear Strategic Zone Utilization, National Nuclear Energy Agency,

DOI:

https://doi.org/10.17146/tdm.2019.21.1.5092

Keywords:

G.A. Siwabessy research reactor, Nuclear emergency, Atmospheric dispersion model, Decision support system, HotSpot codes

Abstract

G.A. Siwabessy Multipurpose Reactor (RSG-GAS) is a research reactor with thermal power of 30 MW located in the Serpong Nuclear Area (KNS), South Tangerang, Banten, Indonesia. Nuclear emergency preparedness of RSG-GAS needs to be improved by developing a decision support system for emergency response. This system covers three important aspects: accident source terms estimation, radioactive materials dispersion model into the atmosphere and radiological impact visualization. In this paper, radioactive materials dispersion during design basis accident (DBA) is modeled using HotSpot, by utilizing sitespecific meteorological data. Based on the modelling, maximum effective dose and thyroid equivalent dose of 1.030 mSv and 26 mSv for the first 7 days of exposure are reached at distance of 1 km from the release point. These values are below IAEA generic criteria related to risk reduction of stochastic effects. The results of radioactive dispersion modeling and radiation dose calculations are integrated with Google Earth Pro to visualize radiological impact caused by a nuclear accident. Digital maps of demographic and land use data are overlayed on Google Earth Pro for more accurate impact estimation to take optimal emergency responses.

References

Badan Tenaga Nuklir Nasional Kesiapsiagaan dan Rencana Kedaruratan. in: Laporan Analisis Keselamatan Reaktor Serba Guna G.A. Siwabessy,. Rev 10.1 ed. Tangerang Selatan, Indonesia: 2011. p. 20.

IAEA Preparedness and Response for a Nuclear or Radiological Emergency General Safety Requirements No.7. Vienna, Austria: 2015.

Susila I.P., Yuniarto A., Cahyana C. Monitoring and Analysis of Environmental Gamma Dose Rate around Serpong Nuclear Complex. 2017. 43(2):87-92.

https://doi.org/10.17146/aij.2017.681

Farid M.M., Prawito, Susila I.P., Yuniarto A. Design of early warning system for nuclear preparedness case study at Serpong. AIP Conf. Proc. 2017. 1862

https://doi.org/10.1063/1.4991171

Leung W.H., Ma W.M., Chan P.K.Y. Nuclear Accident Consequence Assessment in Hong Kong using JRODOS. J. Environ. Radioact. 2018. 183(December 2017):27- 36.

https://doi.org/10.1016/j.jenvrad.2017.12.002

Benamrane Y., Wybo J.L., Armand P. Chernobyl and Fukushima Nuclear Accidents: What has Changed in The Use of Atmospheric Dispersion Modeling? J. Environ. Radioact. 2013. 126:239-52.

https://doi.org/10.1016/j.jenvrad.2013.07.009

Zhang X., Raskob W., Landman C., Trybushnyi D., Haller C., Yuan H. Automatic Plume Episode Identification and Cloud Shine Reconstruction Method for Ambient Gamma Dose Rates during Nuclear Accidents. J. Environ. Radioact. 2017. 178-179:36-47.

https://doi.org/10.1016/j.jenvrad.2017.07.014

Argyris N., French S. Emergency Decision Support: A Behavioural OR Perspective. Eur. J. Oper. Res. 2017. 262(1):180-93. 8 Arif Yuniarto et al. / Tri Dasa Mega Vol. 21 No. 1 (2019) 1-8

https://doi.org/10.1016/j.ejor.2017.03.059

Moehrle S., Raskob W. Structuring and Reusing Knowledge from Historical Events for Supporting Nuclear Emergency and Remediation Management. Eng. Appl. Artif. Intell. 2015. 46:303-11.

https://doi.org/10.1016/j.engappai.2015.07.010

Homann S.G., Aluzzi F. HotSpot User's Guide. Livermore, CA 94550:National Atmospheric Release Advisory Center, Lawrence Livermore National Laboratory; 2014.

Schmittner C., Ma Z., Puschner P., Gan G.- Y., Lee H.-S., Chung C.-C., et al. Use of the "HOTSPOT" Code for Safety and Security Analysis in Nuclear Power Plants: a Case Study. Comput. Safety, Reliab. Secur. Safecomp 2016. 2016. 9923(2):168-78.

Cao B., Zheng J., Chen Y. Radiation dose calculations for a hypothetical accident in xianning nuclear power plant. Sci. Technol. Nucl. Install. 2016. 2016:1-7.

https://doi.org/10.1155/2016/3105878

Foudil Z., Mohamed B., Tahar Z. Estimating of Core Inventory, Source Term and Doses Results for The NUR Research Reactor under A Hypothetical Severe Accident. Prog. Nucl. Energy. 2017. 100:365-72.

https://doi.org/10.1016/j.pnucene.2017.07.013

Shamsuddin S.D., Basri N.A., Omar N., Koh M.-H., Ramli A.T., Hassan W.M.S.W. Radioactive dispersion analysis for hypothetical nuclear power plant (NPP) candidate site in Perak state, Malaysia. EDP Sci. 2017. 00009:1-8.

https://doi.org/10.1051/epjconf/201715600009

Malizia A., Cafarelli C., Milanese L., Pagannone S., Pappalardo A., Giovanni D. Di, et al. Simulation of 137 CS radioactive contamination due to an accident in a biomass plant for energy production : the importance of Decision Support System ( DSS ) in the emergency planning 2 Problem Formulation. 2009.:308-14.

Pirouzmand A., Dehghani P., Hadad K. ScienceDirect Dose assessment of radionuclides dispersion from Bushehr nuclear power plant stack under normal operation and accident conditions. Int. J. Hydrogen Energy. 2015.:1-8.

https://doi.org/10.1016/j.ijhydene.2015.06.043

Udiyani P.M., Suparlina L. Analisis Neutronik dan Keselamatan Radiologi Reaktor RSG-GAS pada Teras Uranium Silisida 300 Gram. 2007.:340-50.

Pusat Pendayagunaan Informatika dan Kawasan Strategis Nuklir - Badan Tenaga Nuklir Nasional Pemutakhiran Data Meteorologi Tahun 2010-2014. Tangerang Selatan, Indonesia: 2015.

Pusat Pendayagunaan Informatika dan Kawasan Strategis Nuklir - Badan Tenaga Nuklir Nasional Laporan Kegiatan Pengamatan Udara Atas Meteorologi Kawasan Nuklir Serpong. Tangerang Selatan, Indonesia: 2018.

Wood A., Wiley, EPA, Vaidyanathan D., Senthilkumar M.S.S., Basha M.G., et al. Cancer risk coefficients for environmental exposure to radionuclides. Int. J. Biodivers. Conserv. 2009. 3(EPA 402-R-99-001):1-6.

Maxwell R.M., Anspaugh L.R. An improved model for prediction of resuspension. 2011.

https://doi.org/10.1097/HP.0b013e31821ddb07

Vučić D.A., Nikezić D., Vaupotič J., Stojanovska Z., Krstić D., Žunić Z.S. Effective dose for real population exposed to indoor radon in dwellings of the former uranium mine area Kalna (Eastern Serbia). Rom. Reports Phys. 2013. 58(SUPPL.):336- 47.

Lebel L.S., Dickson R.S., Glowa G.A. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J. Environ. Radioact. 2016. 151:82-93.

https://doi.org/10.1016/j.jenvrad.2015.06.001

Fujiwara H., Sciences A. Science of the Total Environment Observation of radioactive iodine ( 131 I , 129 I ) in cropland soil after the Fukushima nuclear accident. Sci. Total Environ. 2016. 566- 567:1432-9.

https://doi.org/10.1016/j.scitotenv.2016.06.004

Tagami K., Uchida S., Uchihori Y., Ishii N., Kitamura H., Shirakawa Y. Science of the Total Environment Speci fi c activity and activity ratios of radionuclides in soil collected about 20 km from the Fukushima Daiichi Nuclear Power Plant : Radionuclide release to the south and southwest. Sci. Total Environ. 2011. 409(22):4885-8.

https://doi.org/10.1016/j.scitotenv.2011.07.067

Ahangari R., Noori-kalkhoran O., Sadeghi N. Annals of Nuclear Energy Radiological dose assessment for the hypothetical severe accident of the Tehran Research Reactor and corresponding emergency response. Ann. Nucl. Energy. 2016.

https://doi.org/10.1016/j.anucene.2016.09.005

Tokonami S., Hosoda M. Thyroid equivalent doses for evacuees and radiological impact from the Fukushima nuclear accident. Radiat. Meas. 2018.

https://doi.org/10.1016/j.radmeas.2018.09.004

Tokonami S., Hosoda M., Akiba S., Sorimachi A., Kashiwakura I., Balonov M., et al. Thyroid doses for evacuees from the Fukushima nuclear accident. 2012.:10-3.

https://doi.org/10.1038/srep00507

Downloads

Published

2019-02-22

How to Cite

Yuniarto, A., & Hikmat, M. C. C. (2019). The Study of Atmospheric Dispersion Model on Accident Scenario of Research Reactor G. A. Siwabessy using HotSpot Codes as A Nuclear Emergency Decision Support System. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 21(1), 1–8. https://doi.org/10.17146/tdm.2019.21.1.5092