Reliability Analysis of Primary and Purification Pumps in RSG-GAS Using Monte Carlo Simulation Approach

Authors

  • Entin Hartini Center for Nuclear Reactor Technology and Safety (PTKRN Batan)
  • Hery Adrial Center for Nuclear Reactor Technology and Safety (PTKRN Batan)
  • Santosa Pujiarta Center For Multipurpose Reactor

DOI:

https://doi.org/10.17146/tdm.2019.21.1.5311

Keywords:

Reliability, Monte Carlo, Component damage, RSG-GAS

Abstract

Reliability and maintenance play an important role in ensuring successful operation of a system. Reliability analysis is often used to determine the probability whether or not a system is functioning. However, limited available data and information are causing uncertainties and inaccuracies on component parameters. The purpose of this study is to conduct component/system reliability analysis using Monte Carlo simulation-based method. This method enables us to estimate the reliability of components/systems including parameter uncertainty and imprecision. It is also useful to predict and evaluate maintenance decisions related to reliability. Monte Carlo method employs random number generation based on the probability of the distribution of processed data, of which then validated with real available data to ensure the simulation condition is relatively similar to real-life condition. The data used in this research is failure data on RSGGAS components/systems for core configuration number of 81 to 95, accumulated from year 2013 to 2018. The results show that reliability values of components JE01/AP01-02 on TTF 233.619 is 0.579 while for components KBE01/AP-01-02 in TTF 185.38 is 0.368.The component reliability value is 60%, which implies that maintenance may be performed after 225 days and 100 days for componentsJE01/AP01-02 and KBE01/AP01-02, respectively.

References

Hartini E, Dibyo S, Pujiarta S. Determination of Maintenance Priority Index (MPI) for Components on RSG-Gas Safety System, Tri Dasa Mega. 2018. 22(3):77-88.

https://doi.org/10.17146/tdm.2018.20.2.4283

Deswandri, Subekti M, Sunaryo G.R. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program. J. Phys. Conf. Ser. 2018. 962:1-16.

https://doi.org/10.1088/1742-6596/962/1/012002

Hartini E, Susmikanti M. Reliability Analysis for Critical omponent on The RSG Gas Primary Cooling System. Sigma Epsilon.2018,22 (2): 71-79

https://doi.org/10.17146/sigma.2018.22.2.4494

Susmikanti M, Hartini E, Saepudin A, Sulistyo J.B.Component Analysis of Purification System of RSG GAS.Pengembangan Energi Nuklir. 2018.20.(1): 31-39.

https://doi.org/10.17146/jpen.2018.20.1.4095

Hartini E. Implementation of Missing Values Handling Method for Evaluating the System/Component Maintenance Historical Data.Tri Dasa Mega. 2017.19 (1). : 11-18 .

https://doi.org/10.17146/tdm.2017.19.1.3159

Andriulo S., Arleo M.A., Carlo F. De, Gnoni M.G., Ghonii M.T. Effectiveness of of maintenance approaches for High Reliability Organizations. IFAC-PapersOnLine. 2015. 48(3):466-71.

https://doi.org/10.1016/j.ifacol.2015.06.125

Florian M., Dalsgaard J. Planning of operation& maintenance using risk and reliability based methods.Energy Procedia ; 2015,80: 357 - 364.

https://doi.org/10.1016/j.egypro.2015.11.440

Vishnu C.R., Regikumar V. Reliability Based Maintenance Strategy Selection in Process Plants : A Case Study. Procedia Technol. 2016. 25:1080-7.

https://doi.org/10.1016/j.protcy.2016.08.211

Zio, Enrico.The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Reliab. Eng, 2013

https://doi.org/10.1007/978-1-4471-4588-2

H. Abdo.J-M Flaus, Monte Carlo simulation to solve fuzzy dynamic fault tree. IFAC PapersOnLine. 2016.49(12) :1886-1891

https://doi.org/10.1016/j.ifacol.2016.07.905

Hui Chen, Longbiao Li,Youchao Sun.Risk Assessment of Aero Engine Failure Based on MonteCarlo Simulation.ProcediaEngineering. 2014. 80. : 415 - 423

https://doi.org/10.1016/j.proeng.2014.09.099

Lorentz Jantschi, Sorana D. B.Computation of Probability Associated with Anderson Darling Statistic. Mathematics. 2018. 6. 88.

https://doi.org/10.3390/math6060088

Nikolovski F, Juričić Đ, Dolenc B. On optimal maintenance strategy using discreteevent Monte Carlo simulation. 2014.:183-6.

Joao Silva.Definition of Maintenance Policies in Power Systems Using a Sequential Monte Carlo. J. P. Eng.2015. 1:122-37.

https://doi.org/10.24840/2183-6493_001.001_0012

Aslett L.J.M. Nagapetyan T., Vollmer S.J. Multilevel Monte Carlo for Reliability Theory. Reliab. Eng. Syst. Saf. 2017. 165:188-96.

https://doi.org/10.1016/j.ress.2017.03.003

Sreenuch T., Alghassi A., Perinpanayagam S. Probabilistic Monte-Carlo Method for Modelling and Prediction of Electronics Component Life. Int.J. Advanced Computer Science and Application.2014. 5(1):96-104. 22 Entin Hartini et al. / Tri Dasa Mega Vol. 21 No. 1 (2019) 15-22

https://doi.org/10.14569/IJACSA.2014.050113

Proppe, C. Markov Chain Monte Carlo Simulation Methods for Structural Reliability Analysis, Procedia engineering. 2017.199, 1122-1127.

https://doi.org/10.1016/j.proeng.2017.09.226

S. Raissi, Sh. Ebadi. A Computer Simulation Model for Reliability Estimation of a Complex System, Int. J. Res. Ind. Eng. 2018,7 (1) : 19-31

M. Jirgl. M. Havlikova. Z. Bradac. L. Stastny.Monte Carlo Reliability Analysis of Systems with a Human Operator.IFAC PapersOnLine. 2016.49 :272-277

https://doi.org/10.1016/j.ifacol.2016.12.046

Center for Multipurpose Reactor. Report on Reactor Operation of RSG-GAS. 2013-2018

Downloads

Published

2019-02-22

How to Cite

Hartini, E., Adrial, H., & Pujiarta, S. (2019). Reliability Analysis of Primary and Purification Pumps in RSG-GAS Using Monte Carlo Simulation Approach. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 21(1), 15–22. https://doi.org/10.17146/tdm.2019.21.1.5311