Performance Analysis of RDE Energy Conversion System in Various Reactor Power Condition

Authors

  • Ign. Djoko Irianto Center for Nuclear Reactor Technology and Safety-BATAN
  • Sukmanto Dibyo Center for Nuclear Reactor Technology and Safety-BATAN
  • Sriyono Center for Nuclear Reactor Technology and Safety-BATAN
  • Djati H. Salimy Center for Nuclear Reactor Technology and Safety-BATAN
  • Rahayu Kusumastuti Center for Nuclear Reactor Technology and Safety-BATAN
  • Marliyadi Pancoko Center for Nuclear Facilities Engineering-BATAN

DOI:

https://doi.org/10.17146/tdm.2019.21.3.5570

Keywords:

RDE, Energy Conversion System, Performance, Reactor Power, ChemCad

Abstract

Reaktor Daya Eksperimental (RDE) is an experimental power reactor based on High Temperature Gas-cooled Reactor (HTGR) technology with thermal power of 10 MW. As an experimental power reactor, RDE is designed for electricity generation and provides thermal energy for experimental purposes. RDE energy conversion system is designed with cogeneration configuration in the Rankine cycle. To ensure the effectiveness of its cogeneration, the outlet temperature of the RDE is set at 700°C and steam generator outlet temperature is around 530°C. Analysis of the performance of the energy conversion system in various power levels is needed to determine the RDE operating conditions. This research is aimed to study the performance characteristics of RDE energy conversion systems in various reactor power conditions. The analysis was carried out by simulating thermodynamic parameter calculations on the RDE energy conversion system and the overall cooling system using the ChemCad program package. The simulation is carried out by increasing the reactor power from 0 MW to 10 MW at constant pressure and constant mass flow rate. The simulation results show that the steam fraction at the steam generator outlet increases starting from 3 MW reactor power and reaches saturated steam after the thermal power level of 7.5 MW. From the results, it can be concluded that with constant mass flow rate and operating pressure, optimal turbine power is obtained after the reactor thermal power reached 7.5 MW.

References

Grape S., Jacobsson Svärd S., Hellesen C., Jansson P., Åberg Lindell M. New perspectives on nuclear power-Generation IV nuclear energy systems to strengthen nuclear non-proliferation and support nuclear disarmament. Energy Policy. 2014. 73:815-9.

https://doi.org/10.1016/j.enpol.2014.06.026

Locatelli G., Mancini M., Todeschini N. Generation IV nuclear reactors: Current status and future prospects. Energy Policy. 2013. 61:1503-20.

https://doi.org/10.1016/j.enpol.2013.06.101

Pradeep Varma G. V., Srinivas T. Design and analysis of a cogeneration plant using heat recovery of a cement factory. Case Stud. Therm. Eng. 2015. 5:24-31.

https://doi.org/10.1016/j.csite.2014.12.002

Verfondern K., Yan X., Nishihara T., Allelein H. Safety concept of nuclear cogeneration of hydrogen and electricity. Int. J. Hydrogen Energy. 2017. 42(11):7551-9.

https://doi.org/10.1016/j.ijhydene.2016.04.239

Yan X., Noguchi H., Sato H., Tachibana Y., Kunitomi K., Hino R. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East. Nucl. Eng. Des. 2014. 271:20-9.

https://doi.org/10.1016/j.nucengdes.2013.11.003

Pirmohamadi A., Ghazi M., Nikian M. Optimal design of cogeneration systems in total site using exergy approach. Energy. 2019. 166:1291-302.

https://doi.org/10.1016/j.energy.2018.10.167

Sato H., Yan X.L., Tachibana Y., Kato Y. Assessment of load-following capability of VHTR cogeneration systems. Ann. Nucl. Energy. 2012. 49:33-40.

https://doi.org/10.1016/j.anucene.2012.05.019

Alonso G., Ramirez R., Castillo R. Process heat cogeneration using a high temperature reactor. Nucl. Eng. Des. 2014. 280:137-43.

https://doi.org/10.1016/j.nucengdes.2014.10.005

BATAN The Document Preparation of Preliminary Engineering Design of The Experimental Power Reactor "Conceptual Design of Nuclear Steam Supply System" (RDE/DS-WBS02-201). 2015.

Dibyo S., Irianto I.D. Design analysis on operating parameter of outlet temperature and void fraction in RDE steam generator. Tri Dasa Mega. 2017. 19(1):33-40.

https://doi.org/10.17146/tdm.2017.19.1.3228

Irianto I.D., Sriyono, Kusumastuti R., Santoso K., Subiyah H., Citra A., et al. Effect of Superheated Steam Pressure on the Performance of RDE Energy Conversion System. J. Phys. Conf. Ser. 2019. 1198:022045.

https://doi.org/10.1088/1742-6596/1198/2/022045

Dibyo S., Irianto I.D., Bakhri S. Comparison on Two Option Design of The RDE Cogeneration System. J. Phys. Conf. Ser. 2019. 1198:022039.

https://doi.org/10.1088/1742-6596/1198/2/022039

Dibyo S., Sunaryo G.R., Bakhri S., Irianto I.D. Analysis on Operating Parameter Design to Steam Methane Reforming in Heat Application RDE. J. Phys. Conf. Ser. 2018. 962:012052.

https://doi.org/10.1088/1742-6596/962/1/012052

Irianto I.D., Dibyo S., Salimy D.H., Pane J.S. Thermodynamic Analysis On Rankine Cycle Steam For Cogeneration Systems RGTT200K. in: Seminar Nasional Teknologi Energi Nuklir 2016. 2016. pp. 865-72.

Kadarno P., Park D.S., Mahardika N., Irianto I.D., Nugroho A. Fatigue Evaluation of Pressure Vessel using Finite Element Analysis based on ASME BPVC Sec . VIII Division 2. J. Phys. Conf. Ser. 2019. 1198:042015.

https://doi.org/10.1088/1742-6596/1198/4/042015

Maerani R., Deswandri, Santoso S., Sudarno, Irianto I.D. Reverse Engineering Program Using MBSE to Support Development of I & C System Experimental Power Reactor from PLC to FPGA. J. Phys. Conf. Ser. 2019. 1198:022015.

https://doi.org/10.1088/1742-6596/1198/2/022015

Irianto I.D., Sriyono, Bakhri S., Dibyo S., Nugroho A. Analysis Of Oxidation Performance In Helium Purification System Of The Indonesia Experimental Power Reactor. Int. J. Mech. Eng. Technol. 2018. 9(13):1348-56.

Solanki K., Patel N. Process Optimization Using CHEMCAD. Int. J. Futur. Trends Eng. Technol. 2014. 1(02):47-51.

Cormos C.-C. Biomass direct chemical looping for hydrogen and power co-production: Process configuration, simulation, thermal integration and techno-economic assessment. Fuel Process. Technol. 2015. 137:16-23.

https://doi.org/10.1016/j.fuproc.2015.04.001

Dibyo S., Puji Hastuti E., Irianto I.D. Design Analysis Of Cooling System Process Of The Innovative Research Reactor 50 MW. Tri Dasa Mega. 2015. 17(1):19-30.

https://doi.org/10.17146/tdm.2015.17.1.2235

Zhou Y., Zhou K., Ma Y., Sui Z. Thermal hydraulic simulation of reactor of HTR-PM based on thermal-fluid network and SIMPLE algorithm. Prog. Nucl. Energy. 2013. 62:83-93.

https://doi.org/10.1016/j.pnucene.2012.09.007

BATAN The Document Preparation of Preliminary Engineering Design of The Experimental Power Reactor "Conceptual Design of Nuclear Steam Supply System" (RDE/DS-WBS02-02A). 2015.

Lee J.J., Ghosh T.K., Loyalka S.K. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios. J. Nucl. Mater. 2014. 446(1-3):38-48.

https://doi.org/10.1016/j.jnucmat.2013.11.032

Yanhua Z., Fubing C., Lei S. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM. Nucl. Eng. Des. 2014. 271:397-403.

https://doi.org/10.1016/j.nucengdes.2013.12.008

BATAN The Document Preparation of Preliminary Engineering Design of The Experimental Power Reactor "Conceptual Design of Water/Steam Cycle" (RDE/DS-WBS02-207). 2015.

Irianto I.D. Design And Analysis Of Helium Brayton Cycle For Energy Conversion System Of RGTT200K. Tri Dasa Mega. 2016. 18(2):75-86.

https://doi.org/10.17146/tdm.2016.18.2.2320

Downloads

Published

2019-10-25

How to Cite

Irianto, I. D., Dibyo, S., Sriyono, Salimy, D. H., Kusumastuti, R., & Pancoko, M. (2019). Performance Analysis of RDE Energy Conversion System in Various Reactor Power Condition. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 21(3), 99–106. https://doi.org/10.17146/tdm.2019.21.3.5570