RELAP5 SIMULATION FOR SEVERE ACCIDENT ANALYSIS OF RSG-GAS REACTOR

Authors

  • Andi Sofrany Ekariansyah Center for Nuclear Reactor Technology and Safety-BATAN
  • Endiah P. Hastuti Center for Nuclear Reactor Technology and Safety-BATAN
  • Sudarmono Center for Nuclear Reactor Technology and Safety-BATAN

DOI:

https://doi.org/10.17146/tdm.2018.20.1.4040

Keywords:

loss of flow, blockage, fuel plate, RSG-GAS, RELAP5

Abstract

The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational chararacteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element.

References

Seo CG., Cho NZ. A core design concept for multi-purpose research reactors. Nucl. Eng. Des. 2012; 252: 34 - 41.

https://doi.org/10.1016/j.nucengdes.2012.06.031

Zeggar F., Belgaid M., Zidi T. Estimating of core inventory, source term and doses results for the NUR research reactor under a hypothetical severe accident. Prog. Nucl. Energy 2017; 100: 365-372.

https://doi.org/10.1016/j.pnucene.2017.07.013

Chusov IA., Shelegova AS., Kochnov Y. Design features of water-cooled research reactors. Nucl. Energy Technol. 2016; 2: 287-293.

https://doi.org/10.1016/j.nucet.2016.11.013

BATAN. Laporan Analisis Keselamatan (LAK) RSG-GAS Rev. 10.1. Badan Tenaga Nuklir Nasional; December 2011. Dokumen No. RSG.KK.01.63.11 (in Indonesian).

Hastuti EP. Analisis LOFA teras alternatif silisida 4,8g U/cc RSG-GAS menggunakan PARET-ANL. in: Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir. Yogyakarta. 2007 (in Indonesian).

Ekariansyah AS., Susyadi, Dibyo S. Aplikasi program RELAP5/Mod3.2 untuk simulasi beam tube rupture RSG-GAS. Tri Dasa Mega 2006; 8 (3): 114 - 125.

Hastuti EP, Kaminaga M. Analisis kecelakaan penyumbatan parsial kanal pendingin elemen bakar pada teras oksida dan disain teras silisida RSG GAS. In: Prosiding Pertemuan dan Presentasi Ilmiah. Yogyakarta. 1999 (in Indonesian).

Tabbakh F. Effects of cooling channel blockage on fuel plate temperature in Tehran Research Reactor. Nucl. Sci. Tech. 2009; 20: 184-187.

Lee KY., Kim WS. Theoretical study on loss of coolant accident of a research reactor, Nucl. Eng. Des. 2016; 309: 151-160.

https://doi.org/10.1016/j.nucengdes.2016.09.016

Abdelrazek ID., Naguib Aly M., Badawi AA., Abo Elnour AG, Benchmarking RSG-GAS reactor thermal hydraulic data using RELAP5 code. Ann. Nucl. Energy 2014; 70: 36-43.

https://doi.org/10.1016/j.anucene.2014.02.023

Subekti M., Darwis I., Hastuti EP. Analisis distribusi kecepatan pendingin dalam elemen bakar tipe pelat menggunakan metode CFD untuk reaktor riset RSG-GAS. Tri Dasa Mega 2013; 15(2): 67-76.

Chatzidakis S., Hainoun A., Doval A., Alhabet F., Francioni A., Ikonomopoulos A., Ridikas D., A comparative assessment of independent thermal-hydraulic modelsfor research reactors: the RSG-GAS case. Nucl. Eng. Des. 2014; 268: 77- 86.

https://doi.org/10.1016/j.nucengdes.2013.11.076

Pinem S., Liem PH., Sembiring TS., Surbakti T. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy. Ann. Nucl. Energy 2016; 98: 211-217.

https://doi.org/10.1016/j.anucene.2016.08.010

Karimpour M., Esteki MH. Loss of coolant accident analyses on multi purpose research reactor by RELAP5/MOD3.2 code. Prog. Nucl. Energy 2015; 79: 158-166.

https://doi.org/10.1016/j.pnucene.2014.11.006

Chatzidakis S., Ikonomopoulos A., Ridikas D. Evaluation of RELAP5/MOD3 behavior against loss of flow experimental results from two research reactor facilities. Nucl. Eng. Des. 2013; 255: 321- 329.

https://doi.org/10.1016/j.nucengdes.2012.11.005

Ginting AB. Analisis termal paduan AlMgSi untuk kelongsong bahan bakar U3Si2-Al densitas tinggi. Urania 2010; 16 (2): 47 - 104.

Iliuk I., Balthazar JM., Tusset AM., Piqueira JRC. Thermal-hydraulic analysis of a plate type fuel surrounded by two water channels by using RELAP5, Math. Eng. Sci. Aerospace 2015; 6 (3): 507 - 517.

Lu Q., Qiu S., Su GH. Flow blockage analysis of a channel in a typical material test reactor core. Nucl. Eng. Des. 2009; 239: 45 - 50

https://doi.org/10.1016/j.nucengdes.2008.06.016

Downloads

Published

2018-01-16

How to Cite

Ekariansyah, A. S., Hastuti, E. P., & Sudarmono. (2018). RELAP5 SIMULATION FOR SEVERE ACCIDENT ANALYSIS OF RSG-GAS REACTOR. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 20(1), 23–34. https://doi.org/10.17146/tdm.2018.20.1.4040