NEUTRON AND GAMMA SPECTRUM ANALYSIS OF KARTINI RESEARCH REACTOR FOR BORON NEUTRON CAPTURE THERAPY (BNCT)

Authors

  • Rosilatul Zailani Department of Physics, Universitas Negeri Semarang
  • Gani Priambodo Department of Physics, Gadjah Mada University
  • Yohannes Sardjono Centre for Accelerator Science and Technology, National Nuclear Energy Agency

DOI:

https://doi.org/10.17146/tdm.2018.20.2.4067

Keywords:

BNCT, radial piercing beamport, Kartini Research Reactor, neutron spectrum, gamma spectrum

Abstract

MCNPX was used to design a three-dimensional model of Kartini Research Reactor (KRR) as a neutron source and performed criticality calculation. The criticality calculation of the reactor aims to obtain the neutron and gamma spectrum by simulating the fission reaction inside the reactor core. Total source histories were 105 per cycle, when the number of cycle for criticality calcutation was 1000 cycles with 60 skipped cycles. The reactor criticality according to the simulation result is 1.00179±0.00007. The total neutron flux on ring A, B, C, D, E and F inside the reactor core are respectively 6.553×1011 n/cm2s, 4.53×1012 n/cm2s, 4.167×1012 n/cm2s, 3.751×1012 n/cm2s, 2.914×1012 n/cm2s and 3.107×1012 n/cm2s. The total gamma flux is 6.956×1011 particles/cm2s, 4.838×1012 particles/cm2s, 4.398×1012 particles/cm2s, 3.962×1012 particles/cm2s, 2.953×1012 particles/cm2s and 2.013×1012 particles/cm2s, respectively for each ring. Thermal neutron fluxes recorded on the base of radial piercing beamport were 4.678×1010 n/cm2s, with the epithermal neutron flux of 5.37×109 n/cm2s and fast neutron flux of 4.17×1010 n/cm2s. The gamma flux on that side reaches 4.22×1012 particles/cm2s. On the 92-cm-ranges from the base inside radial piercing beamport, both neutron and gamma flux decrease up to 5.11×108 n/cm2s for thermal neutron flux, 4.598×106 n/cm2s for epithermal neutron flux, 2.55×107 n/cm2s for fast neutron flux and 8.214×1010 particles/cm2s for gamma flux. In conclusion, the spectrum yield from this study can be use to define the source spectrum of the simulations and optimations prior to BNCT pre-clinical trial (in vivo/in vitro test) use KRR radial piercing beamport.

References

Cartelli D, Capoulat ME, Bergueiro J, Gagetti L, SuárezAnzorena M, delGrosso M.F., Baldo M, Castell W, Padulo J, SuárezSandín JC, Igarzabal M, Erhardt J, Mercuri D, Minsky DM, Valda AA, Debray ME, Somacal HR. Present status of accelerator-based BNCT : Focus on developments in Argentina. Appl Radiat Isot. 2015. 106:18-21

https://doi.org/10.1016/j.apradiso.2015.07.031

Kumada H, Kurihara T, Kobayashi H, Yoshioka M, Matsumoto H, Sugano T, Sakurai H, Sakae T, Matsumura A, Canepa N, Real N, Gun M, Herrera MS, Tacca H, Kreiner AJ. Development of Beryllium-Based Neutron Target System with Three-Layer Structure for Accelerator-Based Neutron Source for Boron Neutron Capture Therapy. Appl Radiat Isot. 2015

https://doi.org/10.1016/j.apradiso.2015.07.033

Juan A, Bergueiro J, Cartelli D, Baldo M, Castell W, Asoia JG, Padulo J, Sandín JCS, Igarzabal M, Erhardt J, Mercuri D, Valda AA, Minsky DM, Debray ME, Somacal HR, Capoulat ME, Herrera MS, del Grosso MF, Gagetti L, Anzorena MS, Canepa N, Real N, Gun M, Tacca H. Present status of Accelerator-Based BNCT. Reports Pract Oncol Radiother. 2014:7-13

Kasesaz Y, Bavarnegin E, Golshanian M, Khajeali A, Jarahi H. Progress in Nuclear Energy BNCT project at Tehran Research Reactor : Current and prospective plans. Progress in Nuclear Energy. 2016. 91:107-115

https://doi.org/10.1016/j.pnucene.2016.04.010

Bortolussi S, Protti N, Ferrari M, Postuma I, Fatemi S, Prata M, Ballarini F, Carante MP, Farias R, González SJ, Marrale M, Gallo S, Bartolotta A, Iacoviello G, Nigg D, Altieri S. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nucl Inst Methods Phys Res B. 2018. 414:113-120

https://doi.org/10.1016/j.nimb.2017.10.023

Kawabata Y, Saito Y. Current activities of neutron imaging facilities in KUR ( Kyoto University research reactor ). Phys Procedia. 2013. 43:42-47

https://doi.org/10.1016/j.phpro.2013.03.005

Anttila K, Kosunen A, Savolainen S. Measurement of free beam neutron spectra at eight BNCT facilities worldwide. 2004. 61:1021-1026

https://doi.org/10.1016/j.apradiso.2004.05.035

Khaldun, M. Ibnu, Anang W.H. and Y. Sardjono. An Optimization Design of Collimator in the Thermal Column of Kartini Reactor for BNCT. Indonesian Journal of Physics and Nuclear Applications. 2017. 2(2):54-64

https://doi.org/10.24246/ijpna.v2i2.54-64

Widarto. Analisis dan Penentuan Distribusi Fluks Neutron Saluran Tembus Radial Untuk Pendayagunaan Reaktor Kartini. Ganendra. 2011. 5(1): 31-17

https://doi.org/10.17146/gnd.2002.5.1.211

Galahom AA, Bashter II, Aziz M. Progress in Nuclear Energy Study the neutronic analysis and burnup for BWR fueled with hydride fuel using MCNPX code. Prog Nucl Energy. 2014. 77:65-71

https://doi.org/10.1016/j.pnucene.2014.06.008

Ibrahim A, Aziz M, El-kameesy SU, El-fiki SA, Galahom AA. Annals of Nuclear Energy Analysis of thorium fuel feasibility in large scale gas cooled fast reactor using MCNPX code. Ann Nucl Energy. 2018. 111:460-467

https://doi.org/10.1016/j.anucene.2017.07.029

Erfaninia A, Hedayat A, Mirvakili SM. Progress in Nuclear Energy Neutronic study of a new generation of the small modular pressurized water reactor using Monte-Carlo simulation. Prog Nucl Energy. 2016. 93:218-230

https://doi.org/10.1016/j.pnucene.2016.08.012

Made MI, Dwiputra A, Harto AW, Sardjono Y. Shield Modelling of Boron Neutron Capture Therapy Facility with Kartini Reactor's Thermal Column as Neutron Source using Monte Carlo N Particle Extended Simulator. 2016

https://doi.org/10.24246/ijpna.v1i1.44-53

Priambodo G, Nugroho F, Palupi DS, Zailani R, Sardjono Y. Optimization of Biological Shield for Boron Neutron Capture. Tri Dasa Mega. 2017. 19(3):139-148

https://doi.org/10.17146/tdm.2017.19.3.3626

Arrozaqi, M. Ilma M., Kusminarto and Y. Sardjono. Preparation of Dosimetry of Boron Neutron Capture Therapy (BNCT) for In Vivo Test Planning System Using Monte Carlo N-Particle Extended (MCNPX) Software. Indonesian Journal of Physics and Nuclear Applications. 2016. 1(2):99-107

https://doi.org/10.24246/ijpna.v1i2.99-107

Widarto, Triatmoko IM, Wijaya GS. Quality Management System Program of in Vitro / in Vivo Test Facilityof Boron Neutron Capture Therapy at Kartini Research Reactor. Indonesian Journal of Physics and Nuclear Applications. 2016. 1(2):108-115

https://doi.org/10.24246/ijpna.v1i2.108-115

Arrozaqi, M. Ilma M., Y. Sardjono, Widiharto A. Perancangan Kolimator di Beamport Tembus Reaktor Kartini untuk Boron Neutron Capture Therapy. In: Pertemuan dan Presentasi Ilmiah - Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir PSTA BATAN. 2014. 163-178

IAEA. Current status of neutron capture therapy. Vienna, Austria: International Atomic Energy Agency. 2001

Downloads

Published

2018-07-19

How to Cite

Zailani, R., Priambodo, G., & Sardjono, Y. (2018). NEUTRON AND GAMMA SPECTRUM ANALYSIS OF KARTINI RESEARCH REACTOR FOR BORON NEUTRON CAPTURE THERAPY (BNCT). Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 20(2), 59–68. https://doi.org/10.17146/tdm.2018.20.2.4067