THE THERMOHYDRAULIC ANALYSIS OF THE BANDUNG RESEARCH REACTOR CORE WITH PLATE TYPE FUEL ELEMENTS USING THE CFD CODE
DOI:
https://doi.org/10.17146/tdm.2018.20.3.4626Keywords:
Bandung research reactor, plate type fuel element, thermohydraulic, CFD codeAbstract
Due to TRIGA fuel elements are no longer produced by General Atomic, it is necessary to find a solution so that the Bandung TRIGA 2000 reactor can still be operated. One solution is to replace the type of fuel elements. Study on using the MTR plate type fuel elements as used in RSG-GAS Serpong has been done for the Bandung TRIGA 2000. Based on the results of the study using CFD computer program, it is found that Bandung TRIGA 2000 with plate type fuel elements cannot be operated up to 2000 kW power by natural convection cooling mode. Therefore, the reactor must be cooled by forced convection. The analysis using forced convection showed that for cooling flow rate of 50 kg/s and various temperatures of 35oC, 35.5 oC and 36 oC, the surface temperature of the fuel element is between 110.37 oC and 111.27 oC. Meanwhile, the cooling water temperature in the corresponding position is between 61.03 oC and 61.95 oC. In this operation condition, the surface temperatures of fuel elements can approach the saturation temperature and nucleat boiling started to occur. Hence, the use of cooling flow rate entering core less than 50 kg/s should be avoided. The surface temperature of fuel elements decreased under saturation temperature if cooling flow rate is greater than 65 kg/s. The surface temperature of fuel elements is achieved at 96.65 oC and coolant temperature in the corresponding position was 54.38 oC.
References
Suwarno H. Development of TRIGA Fuel Fabrication by Powder Technique. Atom Indonesia. 2014. 40(3): 113-119.
https://doi.org/10.17146/aij.2014.329
Hampel G, The Importance of TRIGA Reactors, on Behalf of the European TRIGA community. 9th.Johannes Gutenberg-Universitat Mainz D-55099. 2010.
Basuki P, Yazid PI, Suud Z, Desain Neutronik Konversi Elemen Bakar Tipe Pelat Pada Teras Reaktor TRIGA 2000 Bandung. Jurnal Sains dan Teknologi Nuklir Indonesia. 2014. 15(2): 69-79.
Van Den Berghe S, Leenaers A, Edgar K, Leo S. From High to Low Enriched Uranium Fuel in Research Reactors. Advances in Science and Technology. 2010. 73: 78-90.
https://doi.org/10.4028/www.scientific.net/AST.73.78
Mandala GA. Simulasi Modifikasi Reaktor TRIGA 2000 Bandung Dengan Bahan Bakar Jenis Pelat. Proseding Seminar Nasional VI Sumber Daya Manusia Teknologi Nuklir. Yogjakarta. 2010. pp.769 - 774.
Mandala GA, Sihana, Harto AW. Termohidrolik Usulan Modifikasi Reaktor Nuklir TRIGA 2000 Bandung Dengan Bahan Bakar Jenis Pelat. Prosiding Seminar Keselamatan Nuklir. Jakarta. 2011. pp. 254 - 265
Alfa SK, Hastuti EP, Widodo S, Nazar R. Analisis Konveksi Alam Teras Reaktor TRIGA Berbahan Bakar Tipe Pelat Menggunakan Coolod-N2. Tri Dasa Mega. 2015. 17(2): 67-78
https://doi.org/10.17146/tdm.2015.17.2.2317
Subekti M., Isnaini D, Hastuti EP. Analisis Kecepatan Pendingin Dalam Elemen Bakar Tipe Plat Menggunakan Metode CFD Untuk Reaktor Riset RSG GAS, Tri Dasa Mega. 2013. 15(2); 67-76
Surbakti T, Pinem S, Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2); 89 - 97
https://doi.org/10.17146/aij.2018.545
Suparlina L, Surbakti T. Analisis Pola Manajemen Bahan Bakar Teras Reaktor Riset Tipe MTR. Tri Dasa Mega. 2014. 16(2): 88-99
Gharib M, Arkani M, Hossnirokh A. Design and apllication of MTR fuel assemblies in new proposed inverted mode. Nuclear Engineering and Design. 2010. 240: 2981-2987.