DESIGN ANALYSIS ON OPERATING PARAMETER OF OUTLET TEMPERATURE AND VOID FRACTION IN RDE STEAM GENERATOR
DOI:
https://doi.org/10.17146/tdm.2017.19.1.3228Keywords:
outlet temperature, void fraction, superheated steam, RDE steam generatorAbstract
HTGR is one of the next generation reactor types. HTGR is currently considered as one of the leading reactors for the future nuclear power plant. The steam generator is one of the main components in HTGR as well as in RDE. In the steam generator, the heat is transferred by high temperature helium gas in the shell side to water in the tube side to generate the superheated steam. the purpose of this work is to design the operating parameter of outlet temperature and void fraction of steam based on feed water mass flow rate and inlet temperature variations in RDE steam generator. In this work, the Chemcad program was used. Both inlet and outlet temperature of helium gas have been set up as boundary conditions. The result shows that using the mass flow rate of 4.3 kg/s - 4.8 kg/s and water inlet temperature of 110 oC - 160 oC, the superheated steam outlet temperature (void fraction = 1.0) is obtained in the range of 275.5 oC – 600 oC.This analysis is beneficial to assess 10 MW RDE design especially in the steam generator system operating parameters.
References
Alonso G., Ramirez R., Castillo R. Process heat cogeneration using a high temperature reactor. Nucl. Eng. Des. 2014. 280:137-43.
https://doi.org/10.1016/j.nucengdes.2014.10.005
Irianto I.D. Design And Analysis Of Helium Brayton Cycle For Energy Conversion System Of RGTT200K. Tri Dasa Mega. 2016. 18(2):75-86.
https://doi.org/10.17146/tdm.2016.18.2.2320
Zhang Z., Wu Z., Wang D., Xu Y., Sun Y., Li F., et al. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant. Nucl. Eng. Des. 2009. 239(7):1212-9.
https://doi.org/10.1016/j.nucengdes.2009.02.023
Kadak A.C. The Status of the US High-Temperature Gas Reactors. Engineering. 2016. 2(1):119-23.
https://doi.org/10.1016/J.ENG.2016.01.026
Yan X., Noguchi H., Sato H., Tachibana Y., Kunitomi K., Hino R. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East. Nucl. Eng. Des. 2014. 271:20-9.
https://doi.org/10.1016/j.nucengdes.2013.11.003
Miletić M., Fukač R., Pioro I., Dragunov A. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation. Nucl. Eng. Des. 2014. 276:87-97.
https://doi.org/10.1016/j.nucengdes.2014.04.043
Priambodo D., Dewita E., Irianto I.D. Analisis energi dan eksergi pada sistem HTR-10 siklus turbin uap. J. Pengemb. Energi Nukl. 2015. 17(1):33-43.
https://doi.org/10.17146/jpen.2015.17.1.2561
Peng W., Zhang T., Zhen Y., Yu S. Graphite dust resuspension in an HTR-10 steam generator. Particuology. 2014. 17:149-57.
https://doi.org/10.1016/j.partic.2013.12.006
Chen F., Dong Y., Zhang Z. Temperature Response of the HTR-10 during the Power Ascension Test. Sci. Technol. Nucl. Install. 2015. 2015:1-13.
https://doi.org/10.1155/2015/302648
Olson J.T., Li X., Wu X. Tube and shell side coupled thermal analysis of an HTGR helical tube once through steam generator using porous media method. Ann. Nucl. Energy. 2014. 64:67-77.
https://doi.org/10.1016/j.anucene.2013.09.036
Wu Z., Lin D., Zhong D. The design features of the HTR-10. Nucl. Eng. Des. 2002. 218:25-32.
https://doi.org/10.1016/S0029-5493(02)00182-6
Solanki K., Patel N. Process Optimization Using CHEMCAD. Int. J. Futur. Trends Eng. Technol. 2014. 1(2):47-51.
Huaiming J.U., Kaifen Z.U.O., Zhiyong L.I.U., Yuanhui X.U. Two Phase Flow Stability in the HTR-10 Steam Generator. Tsinghua Sci. Technol. 2001. 6(1):75-9.
Chemstations ChemCAD User's Guide CC-Steady State And Tutorial. 2007.
Esch M., Hurtado A., Knoche D., Tietsch W. Analysis of the influence of different heat transfer correlations for HTR helical coil tube bundle steam generators with the system code TRACE. Nucl. Eng. Des. 2012. 251:374-80.
https://doi.org/10.1016/j.nucengdes.2011.09.056
Affandi M., Mamat N., Kanafiah S.N.A.M., Khalid N.S. Simplified equations for saturated steam properties for simulation purpose. Procedia Eng. 2013. 53:722-6.
https://doi.org/10.1016/j.proeng.2013.02.095
Santini L., Cioncolini A., Butel M.T., Ricotti M.E. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications. Int. J. Heat Mass Transf. 2016. 92:91-9.