INVESTIGATION OF RDE THERMAL PARAMETERS CHANGES IN RESPONSE TO LONG-TERM STATION BLACK OUT

Authors

  • Hendro Tjahjono Center for Nuclear Reactor Technology and Safety, BATAN

DOI:

https://doi.org/10.17146/tdm.2017.19.2.3258

Keywords:

experimental power reactor, residual heat removal, transient, Matlab

Abstract

Due to long-term station black out (SBO) of the RDE (Experimental Power Reactor), the residual heat from the core will be removed to a residual heat removal system (RHRS). The objective of this study is to know the transient characteristic of RDE thermal parameters in response to the loss of residual heat removing ability for long-term. To achieve this objective, an analysis model of reactor thermal parameters changes during SBO, using Matlab program to simulate heat transfer equations of conduction, convection and radiation has been performed. Using this program, the changes of RDE thermal parameters until 800 hours after reactor trip have been analyzed. It is concluded that, in long-term SBO condition, the reactor is still safe with the maximum core temperature of 1140°C, which is still far under the safety limit of 1600°C as stated in the design criteria. More attentions are needed to be taken with the increasing of concrete temperature up to 600°C when the water storage is empty. Therefore, the availability of water in the RHRS shall absolutely be maintained.

References

Lommers L.J., Mays B.E., Shahrokhi F. Passive heat removal impact on AREVA HTR design. Nucl. Eng. Des. 2014. 271:569-77.

https://doi.org/10.1016/j.nucengdes.2013.12.034

Zhang Y.P., Qiu S.Z., Su G.H., Tian W.X. Design and transient analyses of emergency passive residual heat removal system of CPR1000. Nucl. Eng. Des. j. 2012. 242:247-56.

https://doi.org/10.1016/j.nucengdes.2011.09.036

Zhou T., Chen J., Luo F., Cheng W. Fuzzy PSA evaluation method for passive residual heat removal system . Nucl. Eng. Des. 2012. 247:230-5.

https://doi.org/10.1016/j.nucengdes.2012.03.007

Sambuu O., Obara T. Comparative study on HTGR designs for passive decay heat removal. Prog. Nucl. Energy. 2014.

https://doi.org/10.1016/j.pnucene.2014.07.013

Cheng Y.E., Yong W., Zhongming Q.I.U. Study on the long-term passive cooling extension of AP1000 reactor. Nucl. Sci. Tech. 2013. 24:1-7.

Sui Z., Sun J., Wei C., Ma Y. The engineering simulation system for HTR-PM. Nucl. Eng. Des. 2014. 271:479-86.

https://doi.org/10.1016/j.nucengdes.2013.12.019

Strydom G., Gougar H.D. Preliminary reactor physics assessment of the HTR module with 14 % enriched UCO fuel. Nucl. Eng. Des. 2013. 256(August 2011):304-21.

https://doi.org/10.1016/j.nucengdes.2012.08.013

Zhang Y., Qiu S., Su G., Tian W. Progress in Nuclear Energy Design and transient analyses of emergency passive residual heat removal system of CPR1000 . Part Ⅰ : Air cooling condition. Prog. Nucl. Energy. 2011. 53(5):471-9.

https://doi.org/10.1016/j.pnucene.2011.03.001

Zhang Z., Dong Y., Li F., Zhang Z., Wang H., Huang X., et al. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation. Engineering. 2016. 2(1):112-8.

https://doi.org/10.1016/J.ENG.2016.01.020

Lv Q., Wang X., Kim I.H., Sun X., Christensen R.N., Blue T.E., et al. Scaling analysis for the direct reactor auxiliary cooling system for FHRs. Nucl. Eng. Des. 2015. 285:197- 206.

https://doi.org/10.1016/j.nucengdes.2014.12.035

Yamoah S., Akaho E.H.K., Ayensu N.G.A., Asamoah M. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor. Res. J. Appl. Sci. Eng. Technol. 2012. 4(12):1659-66.

Su J., Sik H., Keun C., Man J., Venneri F. Thermal-fluid characteristics of the transuranics fuel in a deep-burn HTR core. Nucl. Eng. Des. 2011. 241(9):3867-78.

https://doi.org/10.1016/j.nucengdes.2011.07.004

Incropera F.P., De Witt D.P. Fundamentals of Heat and Mass Transfer. Canada:John Wiley & Sons, Inc.; 1990.

Fu W., Li X., Wu X., Zhang Z. Investigation of a long term passive cooling system using two-phase thermosyphon loops for the nuclear reactor spent fuel pool. Ann. Nucl. Energy. 2015. 85:346-56.

https://doi.org/10.1016/j.anucene.2015.05.026

Irwanto D., Obara T. Decay heat removal without forced cooling on a small simplified PBR with an accumulative fuel loading scheme. Ann. Nucl. Energy. 2013. 60:383-95.

https://doi.org/10.1016/j.anucene.2013.05.022

Ahmad I.A., Aras A.H., Taufieq N.A. The effect of temperature to concrete strength analysis (in bahasa). 2009. 16(2):63-70.

https://doi.org/10.5614/jts.2009.16.2.2

Downloads

Published

2017-05-26

How to Cite

Tjahjono, H. (2017). INVESTIGATION OF RDE THERMAL PARAMETERS CHANGES IN RESPONSE TO LONG-TERM STATION BLACK OUT. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 19(2), 83–92. https://doi.org/10.17146/tdm.2017.19.2.3258