ANALYSIS OF REACTIVITY COEFFICIENT CHANGE DUE TO BURN UP IN AP1000 REACTOR CORE USING NODAL3

Authors

  • Iman Kuntoro Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Surian Pinem Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Tagor Malem Sembiring Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

DOI:

https://doi.org/10.17146/tdm.2017.19.3.3668

Keywords:

reactivity coefficient, burn up, AP1000, NODAL3

Abstract

One of the important things in reactor safety is the value of inherent safety parameter namely reactivity coefficient. These inherent safety parameters are fuel and moderator temperature coefficients of reactivity.  The objective of the study is to obtain the change of those reactivity coefficients as a function of fuel burn up during the cycle operation of AP 1000 reactor core. Fuel and moderator temperature coefficients of reactivity and in addition moderator density coefficient of reactivity were calculated using SRAC 2006 and NODAL3 computer codes. Cross section generation of all core material was done by SRAC 2006 Code. The calculation of core reactivity as a function of temperature and burn up were carried out using NODAL3 Code. The results show that all reactivity coefficients of AP 1000 reactor core are always negative during the operation cycles and the values are in a good agreement to the design. It can be concluded that the AP 1000 core has a good inherent safety of its fuel

 

References

Schulz T.L. Westinghouse AP1000 advanced passive plant. Nucl. Eng. Des. 2006. 236(14-16):1547-57.

https://doi.org/10.1016/j.nucengdes.2006.03.049

Westinghouse electric company: Westinghouse European Design Control Document revision 1. Chapter 4. 2011.

Sembiring T.M., Pinem S. The validation of NODAL3 code for static cases of the PWR benchmark core. Journal of Nuclear Science of Technology Ganendra. 2012. 15(2):82- 92.

https://doi.org/10.17146/gnd.2012.15.2.18

Pinem S., Sembiring T.M., Liem P.H. The verification of coupled neutronics thermalhydraulics code NODAL3 in the PWR rod ejection benchmark. Sci. Technol. Nucl. Install. 2014. 2014

https://doi.org/10.1155/2014/845832

Pinem S., Sembiring T.M., Liem P.H. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR). Sci. Technol. Nucl. Install. 2016. 2016

https://doi.org/10.1155/2016/7538681

Sembiring T.M., Pinem S., Liem P.H. Validation of full core geometry model of the NODAL3 Code in the PWR transient benchmark problems. Tri Dasa Mega. 2015. 2015:141-8.

https://doi.org/10.17146/tdm.2015.17.3.2322

Liem P.H., Pinem S., Sembiring T.M., Tran H. Status on development and verification of reactivity initiated accident analysis code for PWR ( NODAL3 ). Nucl. Sci. Technol. 2016. 6(1):1-13.

https://doi.org/10.53747/jnst.v6i1.139

T M Sembiring S, Pinem S. Evaluation of moderator temperature coefficient of reactivity for the 1000 MWe PWR nuclear plant. in: Prosiding Seminar Nasional ke-17 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklir. Yogjakarta. 2011. pp. 164-74

Susilo J., Pane J.S. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of ap1000. Tri Dasa Mega. 2016. 18(2):101-11.

https://doi.org/10.17146/tdm.2016.18.2.2665

Sembiring T.M. Analysis of the 3-dimensional core model for evaluation of criticality parameters of the Advanced PWR 100 MW class. Tri Dasa Mega. 2011. 13(2):78-95.

Tukiran S., Sembiring T.M., Surian P. Characteristic of control rods reactivity worth of the AP1000 core. in: Prosiding Seminar Nasional Teknologi Energi Nuklir 2016 Batam. 2016. pp. 4-5.

Pinem S., Surbakti T. Analysis on the Change in Neutronic Parameters due to Mispositioning of Fuel in the AP1000 Core. in: Prosiding Seminar Nasional Teknologi Energi Nuklir 2016. 2016. pp. 569-75.

Safarzadeh O., Shirani A.S. Progress in Nuclear Energy Calculation of reactivity coef fi cients with burn-up changes for VVER-1000 reactor. Prog. Nucl. Energy. 2015. 81:217- 27.

https://doi.org/10.1016/j.pnucene.2015.02.006

Amjad N., Hidekazu Y., Ming Y. Burnup study of 18 months and 16 / 20 months cycle AP1000 cores using CASMO4E and SIMULATE-3 codes. 2014. 5(2)

Elsawi M.A., Hraiz A.S. Benchmarking of the WIMS9/PARCS/TRACE code system for neutronic calculations of the Westinghouse AP1000TM reactor. Nucl. Eng. Des. 2015. 293:249-57.

https://doi.org/10.1016/j.nucengdes.2015.08.008

Okumura K., K K., K T. SRAC2006: A Comprehensive Neutronics Calculation Code System. Tokai: JAEA. 2007.

Downloads

Published

2017-10-10

How to Cite

Kuntoro, I., Pinem, S., & Sembiring, T. M. (2017). ANALYSIS OF REACTIVITY COEFFICIENT CHANGE DUE TO BURN UP IN AP1000 REACTOR CORE USING NODAL3. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 19(3), 131–138. https://doi.org/10.17146/tdm.2017.19.3.3668