ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW

Authors

  • Sukmanto Dibyo Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Endiah Puji Hastuti Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Ign. Djoko Irianto Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

DOI:

https://doi.org/10.17146/tdm.2015.17.1.2235

Keywords:

RRI 50MW, design of cooling system, program Chemcad 6.1.4.

Abstract

Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC.

 

References

Sukmanto D, Ign. Djoko I., Analisis desain konseptual proses operasi sistem pendingin reaktor riset inovatif 20 MW menggunakan paket ChemCAD, Prosiding PPI-PDIPTN PTAPB-Batan Yogyakarta 2013.

Iman K, Surian P, Tagor M.S. Desain teras alternatif untuk reaktor riset inovatif (RRI) dari aspek neutronik J. Tek. Reaktor. Nukl. Vol.16 no.1 Hal. 1-10; Feb. 2014.

Endiah P.H, Subekti M. Analisis aspek termohidrolika pada desain awal bahan bakar RRI daya tinggi. Prosiding seminar nasional TKPFN-19. Batan-UIN Sunan Kalijaga Yogyakarta, ISSN.0854.2910;10-2013.

PRSG-Batan. Sistem pendingin reaktor. LAK RSG-GAS Rev 10 Bab 6.vol.2. Jakarta;2010.

INVAP. Reactor cooling system and connected systems. RRRP-7225-SAR Chapt. 6. ANSTO;2004.

Heonil KIM, Hark Rho KIM, Kye Hong LEE, Ji Bok LEE. Design characteristics and startup tests of Hanaro, Journal of nuclear Science and Technology. vol.33. no.7. p.527-538; July 1996.

https://doi.org/10.1080/18811248.1996.9731952

Onishi N. Diagram of primary cooling loop and heavy water cooling loop of JRR-3M. Kinds of a nuclear reactors - reactors for nuclear sciences and technologies. NSRA Japan; 2008.

Chemtation-Team. ChemCAD Version 6-User guide; 2011.

Christian BJ. The centrifugal pump - Structural and fluid mechanics. Grund for research and technology denmark; 2010.

Kern DQ. Process heat transfer. International student edition. Mc.Graw hill book co. NY;1965.

Vera García. A simplified model for shell-and-tubes heat exchangers. Practical application. Applied thermal engineering 30. 1231-1241; 2010.

https://doi.org/10.1016/j.applthermaleng.2010.02.004

M. Lucas. Experimental determination of drift loss from a cooling tower with different drift eliminators using the chemical balance method. International journal of refrigeration 1779- 178835; 2012.

https://doi.org/10.1016/j.ijrefrig.2012.04.005

Mortaza Gholizadeh.The estimation of the cooling tower height by modeling the water and air contact situation in cooling tower falling film. Journal of chemical engineering and materials science.v.2(2). pp.21-27; February 2011.

Perry RH-Green DW. Psychrometry, evaporative cooling and solids drying. Sect. 12. Chemical engineer handbook. 6th edition. The mcGraw-hill companies, Inc.Copyright©; 1999.

Viska M. Practical engineering guidelines for processing plant solutions. Cooling tower selection. Sizing (Engineering design guideline), KLM techn. group Malaysia;07-2011.

Sukmanto D, Surip W. Analisis desain tangki tunda N-16 sistem pendingin RRI melalui aplikasi Relap5. Seminar nasional TKPFN-19 Yogyakarta; 09-2013.

Sukmanto D, Bambang H.G. Perhitungan desain termal penukar panas sistem pendingin RRI-50. Majalah ilmiah sigma epsilon; 2014 (draft rev.0).

Sukmanto D. Penentuan laju blow-down sistem menara pendingin RSG-GAS. Prosiding presentasi ilmiah penelitian dasar ilmu pengetahuan dan teknologi nuklir P3TM Batan Yogyakarta; 2003.

FrenchCreek. Cooling water modeling (WaterCycle-Rx). FrenchCreek softwarev.7; 2011.

Downloads

Published

2015-08-09

How to Cite

Dibyo, S., Hastuti, E. P., & Irianto, I. D. (2015). ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 17(1), 19–30. https://doi.org/10.17146/tdm.2015.17.1.2235