ANALISIS KONVEKSI ALAM TERAS REAKTOR TRIGA BERBAHAN BAKAR TIPE PELAT MENGGUNAKAN COOLOD-N2
DOI:
https://doi.org/10.17146/tdm.2015.17.2.2317Keywords:
TRIGA Convertion, COOLOD-N2, Thermalhydraulics characteristic, natural convection, plate type fuel elementAbstract
ANALYSIS OF NATURAL CONVECTION IN TRIGA REACTOR CORE PLATE TYPES FUELED USING COOLOD-N2. Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element that available on the market. In this study, the calculation of U3Si2Al fuel with uranium enrichment of 19.75 % and a load level of 2.96 gU/cm3 was performed. Analyses were performed using the validated COOLOD - N2 program. TRIGA conversion core configurations of fuel plate type are composed of 16 fuel elements, 4 control elements and 1 irradiation facilities which are located in the middle of core. The calculation results showed that if the cooling temperature was 37°C, and the ratio of radial power peaking factor ≤ 1.92, then the maximum power that can be operated on free convection mode of operation was 600 kW. The thermalhydraulic characteristic obtained such as coolant temperature at the outlet side, cladding and meat were 82.39°C, 108.88°C and 109.02°C respectively, while the ΔTONB (Temperature Onset of Nucleate Boiling) was 7.18°C and OFIR (Onset of flow instability ratio) value was 1.03. The results are expected to be used as a reference for determining the power level of the TRIGA reactor core plate types fueled.
References
IAEA, Generic Procedures for Response to a Nuclear or Radiological Emergency at TRIGA Research Reactors, EPR-Triga Research Reactor, IAEA, Vienna, 2011.
H. Suwarno, Development of TRIGA Fuel Fabrication by Powder Technique, Atom Indonesia Vol. 40 No. 3, 2014: 113.
https://doi.org/10.17146/aij.2014.329
G. Hampel, The Importance of TRIGA Reactors, on Behalf of the European TRIGA community, Johannes Gutenberg-Universitat Mainz D-55099, 9th April 2010
VAN DEN BERGHE Sven, LEENAERS Ann, KOONEN Edgar and SANNEN Leo, From High to Low Enriched Uranium Fuel in Research Reactors, Advances in Science and Technology Vol. 73 2010: 78-90.
https://doi.org/10.4028/www.scientific.net/AST.73.78
Gede Ardana Mandala, Simulasi Modifikasi Reaktor TRIGA 2000 Bandung Dengan Bahan Bakar Jenis Pelat, SEMINAR NASIONAL VI, SDM TEKNOLOGI NUKLIR, YOGYAKARTA, 18 NOVEMBER 2010, ISSN 1978-0176, hal. 769 - 774.
Gede Ardana Mandala, Sihana, Andang Widi Harto, Termohidrolik usulan modifikasi reaktor nuklir TRIGA 2000 Bandung dengan bahan bakar jenis pelat, Prosiding Seminar Keselamatan Nuklir 2011, ISSN: 1412 - 3258, BAPETEN, JAKARTA, 27 - 28 Juni 2011, hal. 254 - 265
Prasetyo Basuki, Putranto Ilham Yazid, Zaki Zuud, Desain Neutronika Elemen Bakar Tipe Pelat pada Teras Triga 2000 Bandung, Jurnal Sains dan Teknologi Nuklir Indonesia, Vol. 15, No.2, 2014: 69 -79.
KAMINAGA M. COOLOD-N2: A Computer Code For The Analyses of Steady-State Thermal Hydraulics in Research Reaktors. 1994 March. Report No.: JAERI-M, 94-052.
Sudjatmi K.A., Endiah Puji Hastuti. Aplikasi Program Coolod-N2 Untuk Analisis Termohidrolik Teras Reaktor TRIGA. Prosiding Seminar Nasional Sains dan Teknik Nuklir Bandung; 14 - 15 Juni 2005, Puslitbang Teknik Nuklir - BATAN; 2005, hal. 312-319.
Mohammad Mizanur Rahman, Mohammad Abdur R. Akond, Mohammad Khairul Basher, Md. Quamrul Huda. Steady-State Thermal-Hydraulic Analysis of TRIGA Research Reactor. World Journal of Nuclear Science and Technology, 4, 2014: 81-87.
https://doi.org/10.4236/wjnst.2014.42013
N. H. Badrun, M. H. Altaf and M. J. H. Khan, Validation of COOLOD-N2 Code Through Benchmark Calculations of IEA-R1 Reactor, The Nucleus 51, No. 4 2014: 444-447.
Y. Boulaich , B. Nacir, T. El Bardouni, M. Zoubair, B. El Bakkari, O. Merroun, C. El Younoussi, A. Htet, H. Boukhal, E. Chakir. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes, Nuclear Engineering and Design 241, 2011: 270-273.
https://doi.org/10.1016/j.nucengdes.2010.10.033
Safety Guide No. NS-G-4.4 Standards Operational Limits and Conditions and Operating Procedures for Research Reactors. International Atomic Energy Agency, Vienna, 2008.
Sembiring TM., Pinem S., Setiyanto. Validation of the Monte Carlo Code MVP on the First Criticality of Indonesian Multipurpose Reactor. http://www-pub.iaea.org /MTCD/publications/PDF/P1360_ICRR_2007_CD/Papers/T.M.%20Sembiring.pdf. Diunduh Maret, 2013.
Xiuzhong Shen, Ken Nakajima, Hironobu Uneski, Kaichiro Mishima. Reactivity insertion transient analysis for KUR low-enriched uranium silicide fuel core. Annals of Nuclear Energy 62 2013: 195-207.
https://doi.org/10.1016/j.anucene.2013.06.014
Luong Ba Vien, Le Vinh Vinh, Huynh Ton Nghiem, Nguyen Kien Cuong. Design Analyses for Full Core Conversion of The Dalat Nuclear Research Reactor. Nuclear Science and Technology, vol. 4, No. 1 2014: 10-25.
https://doi.org/10.53747/jnst.v4i1.209
Anonim, Laporan Analisis Keselamatan Reaktor TRIGA 2000 Bandung, Revisi 3, 2006.