ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA

Authors

  • Andi Sofrany Ekariansyah Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

DOI:

https://doi.org/10.17146/tdm.2015.17.2.2291

Keywords:

analysis, mixture level, fuel cladding temperature, small break LOCA, RELAP5

Abstract

ANALYSIS ON THE CORE CONDITION OF AP1000 ADVANCED POWER REACTOR DURING SMALL BREAK LOCA. Accident due to the loss of coolant from the reactor boundary is an anticipated design basis event in the design of power reactor adopting the Generation II up to IV technology. Small break LOCA leads to more significant impact on safety compared to the large break LOCA as shown in the Three-Mile Island (TMI). The focus of this paper is the small break LOCA analysis on the Generation III+ advanced power reactor of AP1000 by simulating three different initiating events, which are inadvertent opening of Automatic Depressurization System (ADS), double-ended break on one of Direct Vessel Injection (DVI) pipe, and 10 inch diameter split break on one of cold leg pipe. Methodology used is by simulating the events on the AP1000 model developed using RELAP5/SCDAP/Mod3.4. The impact analyzed is the core condition during the small break LOCA consisting of the mixture level occurrence and the fuel cladding temperature transient. The results show that the mixture level for all small break LOCA events are above the active core height, which indicates no core uncovery event. The development of the mixture level affect the fuel cladding temperature transient, which shows a decreasingly trend after the break, and the effectifeness of core cooling. Those results are identical with the results of other code of NOTRUMP. The resulted core cooling is also due to the function of coolant injection from passive safety feature, which is unique in the AP1000 design. In overall, the result of analysis shows that the AP1000 model developed by the RELAP5 can be used for analysis of design basis accident considered in the AP1000 advanced power reactor.

 

References

International Atomic Energy Agency. Fundamental Safety Principles. IAEA Safety Standards Series No. SF-1, Vienna 2006.

International Atomic Energy Agency. Assessment of Defence in Depth for Nuclear Power Plants. IAEA Safety Reports Series 46, Vienna 2005.

Commonwealth Edison Company. Updated Final Safety Analysis Report: Volume 6, Chapter 15: Safety Analyses", July 1993.

OECD Nuclear Energy Agency. Technology Roadmap Update for Generation IV Nuclear Energy Systems. Publication prepared by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD), January 2014.

Nusret, A. Selected Examples of Natural Circulation for Small Break LOCA and Some Severe Accidents. IAEA Course on Natural Circulation in Water-Cooled Nuclear Power Plants. International Centre for Theoretical Physics (ICTP),Trieste, Italy, 2007.

Zhou, S, Zhang, X. Nuclear Energy Development in China: a Study of Opportunities and Challenges. Energy 2010; 35: 4282-4288.

https://doi.org/10.1016/j.energy.2009.04.020

Westinghouse Electric Co. AP-1000 European Design Control Document; 2009 Document Nr.: EPS-GW-GL-700 Revision 0.

Elshahat A, Abram T, Hohorst J, Allison, C. Simulation of the Westinghouse AP1000 Response to SBLOCA Using RELAP/SCDAPSIM. International Journal of Nuclear Energy Volume 2014.

https://doi.org/10.1155/2014/410715

Guozhi Z, Xinrong C, Xingwei S. Analysis of Fourth Stage of Automatic Depressurization System Failure to Open in AP1000 LOCA. Research Journal of Applied Sciences, Engineering and Technology 2014; 7: 18-22.

https://doi.org/10.19026/rjaset.7.214

Yang J, Wang W.W, Qiu S.Z, Tian W.X, Su G.H, Wu Y.W. Simulation and Analysis on 10- in. Cold Leg Small Break LOCA for AP1000. Annals of Nuclear Energy 2012; 46: 81 - 89.

https://doi.org/10.1016/j.anucene.2012.03.007

Heng Xie, Shuangji He. The SCDAP/RELAP5 3.2 Model of AP1000 on SBLOCA. Progress in Nuclear Energy 2012; 61: 102-107.

https://doi.org/10.1016/j.pnucene.2012.07.006

Wang W.W, Su G.H, Tian W.X, Qiu S.Z. Research on Thermal Hydraulic Behavior of Small-Break LOCAs in AP1000. Nuclear Engineering and Design 2013; 263: 380 - 394.

https://doi.org/10.1016/j.nucengdes.2013.06.004

Andi Sofrany Ekariansyah, Surip Widodo, Susyadi, D.T. Sony Tjahjani, Hendro Tjahjono. Verifikasi Kecelakaan Hilangnya Aliran Air Umpan pada Reaktor Daya PWR Maju. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 2012; 14: 76 - 90.

K.E. Carlson. PWR Small Break LOCA Evaluation Model, S-RELAP5 Based. Framatome ANP; 2001 Topical Report prepared by Siemens Power Corporation, EMF-2328 (P).

OECD Nuclear Energy Agency. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions, State-of-the-art Report. Document issued by The NEA Working Group on Fuel Safety (WGFS), NEA No. 6846, 2009, ISBN 978-92-64-99091-3

Tasaka K, Kukita Y, Koizumi Y, Osakabe M, Nakamura H. The Results of 5 % Small Break LOCA Tests and Natural Circulation Tests at the ROSA-IV LSTF. Nuclear Engineering and Design 1988; 108: 37 -44.

https://doi.org/10.1016/0029-5493(88)90054-4

W.W.Wang, G.H. Su, S.Z. Qiu, W.X. Tian. Thermal Hydraulic Phenomena related to Small Break LOCAs in AP1000. Progress in Nuclear Energy 2011; 53: 407-419.

https://doi.org/10.1016/j.pnucene.2011.02.007

Schulz T.L. Westinghouse AP1000 Advanced Passive Plant. Nuclear Engineering Design 2006; 236: 1547 - 1557.

https://doi.org/10.1016/j.nucengdes.2006.03.049

R.F. Wright. Simulated AP1000 Response to Design Basis Small-Break LOCA Events in APEX-1000 Test Facility. Nuclear Engineering and Technology 2007; 39: 287 - 298.

https://doi.org/10.5516/NET.2007.39.4.287

Andi Sofrany Ekariansyah, Surip Widodo, Susyadi, D.T. Sony Tjahjani, Hendro Tjahjono. Pengembangan Model untuk Simulasi Keselamatan Reaktor PWR 1000 MWe Generasi III+ menggunakan Program Komputer RELAP5. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 2011; 13: 50 - 62.

Andi Sofrany Ekariansyah, Surip Widodo, Susyadi. Pemodelan Sistem Pendinginan Sungkup secara Pasif menggunakan RELAP5. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 2012; 14: 137 - 145.

Andi Sofrany Ekariansyah. Pemodelan Automatic Depressurization System (ADS) pada Reaktor Daya AP1000 untuk Simulasi Kecelakaan. Proseding Seminar Nasional Teknologi Energi Nuklir ke-14; 19 Juni 2014. Pontianak; 2014. p. 615 - 624

Andi Sofrany Ekariansyah, Julwan P. Purba, Surip Widodo, Sumantri H. Analisis Kecelakaan Hilangnya Pendingin Primer AP1000 Akibat Putusnya Pipa Direct Vessel Injection (DVI). Laporan Teknis Hasil Penelitian Tahun Anggaran 2014, Pusat Teknologi dan Keselamatan Reaktor Nuklir, 2014.

Christian Andersen. The Prediction of Two Phase Mixture Level and Cooling Conditions during a Partial Core Uncovery. Dissertation submitted for the degree of licentiate in mechanical engineering at Department of Nuclear Reactor Engineering, Royal Institute of Technology, Stockholm, Sweden, 1988.

Downloads

Published

2015-11-20

How to Cite

Ekariansyah, A. S. (2015). ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 17(2), 87–98. https://doi.org/10.17146/tdm.2015.17.2.2291