DESAIN KONSEPTUAL PERISAI RADIASI REAKTOR RRI-50

Authors

  • Amir Hamzah Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Iman Kuntoro Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

DOI:

https://doi.org/10.17146/tdm.2015.17.2.2315

Keywords:

Radiation shielding, dose rates, radiation safety, RRI-50

Abstract

One of the parameters that must be met in the design of nuclear reactors is radiation shielding design to ensure the security and safety of workers and the surrounding community. This study has been conducted to design radiation shielding of RRI-50 with high density U9Mo-Al fuel elements that consist of 21 pieces of plate type fuel elements with dimension as same as RSG-GAS fuel elements but the active length is 70 cm. Core configurations consist of 16 fuel elements and 4 control elements and 5 irradiation positions to form a matrix of 5 x 5. The objective of this research is to design radiation shielding and determine the distribution of dose rates in the working area and the environment of RRI-50 reactor. The early stages of this research is to calculate source strength and inventory of radioactive materials within the reactor core with one operation pattern cycle of 50 MW for 20 days using ORGEN2.1 program. Based on core source strength and models that are created using the VisEd software, the analysis parameter of the shielding was determined iteratively using MCNPX program. In the final stage, an analysis of the dose rate distributions in the whole space inside and outside the reactor building was conducted also using MCNPX program. The results show that the height of the water surface is 1000 cm and the combination of heavy concrete thickness of 90 cm and ordinary concrete thickness of 60 cm can be used as an biological shield. This design can reduce the dose rate to 0.05 µSv/h in the Operations Room while in the Experiments Room and outside the reactor building to 4.2 µSv/h and 0.03 µSv/h during reactor operation. The results also suggest that the installation of additional radiation shield of 280 cm thickness within 300 cm in front of the open radial neutron beam tube can reduce gamma and neutron dose rate to 3.3 µSv/h and 3,1x10-11 µSv/h. The results of this study indicate that the radiation shield design is made to make reactor RRI-50 to be safe from radiation hazards to workers and surrounding communities.

 

References

Amir Hamzah, Desain Awal Perisai Radiasi Dan Analisis Laju Dosis Di Daerah Kerja Reaktor Riset Inovatif Menggunakan MCNPX. Prosiding Seminar Nasional ke-19 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklir; 2013 24-25 Sep, Yogyakarta; 2013.p. 266-275

Tukiran S., at. all. Desain Konseptual Teras Reaktor Riset Inovatif Berbahan Bakar Uranium Molibdenum Dari Aspek Neutronik. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2012; 14, No.3, Oktober: 178-191

Rokhmadi, Tukiran S. Efek Densitas Bahan Bakar Terhadap Parameter Koefisien Reaktivitas Teras RRI. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2013; 15, No.2, Juni: 77-89

Sukmanto Dibyo, Endiah P.H, Ing. Djoko Irianto. Analisis Desain Proses Sistem Pendingin Pada Reaktor Riset Inovatif 50 MW. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2015; 17, No.1, Februari: 19-30

https://doi.org/10.17146/tdm.2015.17.1.2235

Iman Kuntoro, Tagor Malem Sembiring. Desain Teras Alternatif Untuk Reaktor Riset Inovatif (RRI) Dari Aspek Neutronik. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2014; 16, No.1, Februari: 1-10

Setiyanto. Desain Teras Reaktor Riset Inovatif (RRI). Estimasi Dan Analisis Distribusi Panas Gamma. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2014; 16, No.3, Oktober: 160-168

Yuan Luzheng and Kang Yalun, Problems Concerned In Fuel Design of CARR, Presented at the 1998 International Meeting on Reduced Enrichment for Research and Test Reactors; 1998 Oct 18-23. São Paulo, Brazil

Meiyin Zheng et. all. Development of a MCNP-ORIGEN burn-up calculation code system and its accuracy assessment. Ann Nucl. Energy 2014; 63: 491-498

https://doi.org/10.1016/j.anucene.2013.08.020

Ardani. Evaluasi Dosis Gamma Akibat Penurunan Permukaan Air Kolam RSG-GAS. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2007; 9, No.2, Juni: 51-64

Bapeten. Proteksi dan Keselamatan Radiasi Dalam Pemanfaatan Tenaga Nuklir. Perka Nomor 4 tahun 2013. BAPETEN; 2013

Amir Hamzah. Analisis Laju Dosis Neutron Reaktor PLTN PWR 1000 MWe Menggunakan Program MCNP. Jurnal Teknologi Reaktor Nuklir, Tri Dasa Mega, ISSN 1411-240X 2012; 14, No.2, Juni: 65-75

Berna Oto, at. all. Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Design 2015; 293: 166-175

https://doi.org/10.1016/j.nucengdes.2015.07.060

Alia Alizadeh, Amir Saeid Shirani, Samira Kashi. Neutron and gamma-ray deep penetration calculation through biological concrete shield of VVER-1000 reactor by a new technique based on variance reduction. Ann. Nucl. Energy 2013; 60: 86-92

https://doi.org/10.1016/j.anucene.2013.04.033

Osman Gencel, at. all. Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 2011; 38: 2719-2723

https://doi.org/10.1016/j.anucene.2011.08.010

D. Sariyer, R. Küçer, N. Küçer. Neutron Shielding Properties of Concretes Containing Boron Carbide and Ferro - Boron. World Conference on Technology, Innovation and Entrepreneurship, Procedia - Social and Behavioral Sciences 2015; 195: 1752 - 1756

https://doi.org/10.1016/j.sbspro.2015.06.320

I. Akkurt, A.M. El-Khayatt. The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 2013; 51: 5-9

https://doi.org/10.1016/j.anucene.2012.08.026

Mario Matijevic', Dubravko Pevec, Krešimir Trontl. Boration modeling of the PWR biological shield using SCALE6.1 hybrid shielding methodology. Ann. Nucl. Energy 2015; 85: 979-994

https://doi.org/10.1016/j.anucene.2015.07.014

Downloads

Published

2015-11-20

How to Cite

Hamzah, A., & Kuntoro, I. (2015). DESAIN KONSEPTUAL PERISAI RADIASI REAKTOR RRI-50. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 17(2), 99–110. https://doi.org/10.17146/tdm.2015.17.2.2315