PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

Authors

  • Bemby Yulio Vallenry Jurusan Teknik Fisika FT Universitas Gajah Mada
  • Andang Widiharto Jurusan Teknik Fisika FT Universitas Gajah Mada
  • Yohannes Sardjono Pusat Sains dan Teknologi Akselerator-BATAN (PSTA-BATAN)

Keywords:

BNCT, radial beamport, MCNP 5, collimator

Abstract

One of the cancer therapy methods is BNCT (Boron Neutron Capture Therapy). BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the rradiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte CarloN-Particle version5 (MCNP 5). MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (Фepi) > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Ḋf/Фepi) < 2.0 x10-13 Gy.cm2.n-1, the ratio of gamma dose rate and epithermal neutron flux (Ḋγ/Фepi) < 2.0 x10-13 Gy.cm2.n-1, the ratio between the thermal and epithermal neutron flux (Фth/Фepi) < 0.05 and the ratio between the current and flux of the epithermal neutron (J/Фepi) > 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were Фepi = 5.25 x 10n.cm-2.s-1Ḋf/Фepi = 1.17 x 10-13 Gy.cm2.n-1Ḋγ/Фepi = 1.70 x 10-12 Gy.cm2.n-1Фth/Фepi = 1.51 and J/Фepi = 0.731. Based on this study, the results of the beam radiation coming out of the radial beam port did not fully meet the criteria recommended by the IAEA so need to continue this study to get the criteria of IAEA.

 

References

World Health Organization, 2013, World health statistics 2013. Available from: hyperlink http://www.who.int/gho/publications/world_health_statistics/2013/en/. Accessed 5 Juli 2014.

Tiyapun, K. Epithermal neutron beam design at the Oregon State University TRIGA MARK II reactor (OSTR) based on Monte Carlo Methods. Thesis., Oregon State University, Corvallis; 1997

Rorer, D.A., Wambersie, G., Whitmore, R., Zamenhof, V., Levin, P., Andreo, dan Dodd, B. Current status of neutron capture therapy. A technical document, IAEA-TECDOC-1223, IAEA, Vienna; 2001.

Sauerwein, W., dan Moss, R. Requirement for boron neutron capture therapy (BNCT) at a nuclear research reactor. The European BNCT Project, Belanda; 2009

Ilma, M. Perancangan kolimator di beam port tembus reaktor Kartini untuk boron neutron capture therapy. Skripsi, Jurusan Teknik Fisika, Universitas Gadjah Mada, Yogyakarta; 2013.

BATAN. Laporan analisis keselamatan reaktor Kartini. Dokumen Teknis, C7/05/B2/LAK/2005, Pusat Teknologi Akselerator dan Proses Bahan Badan Tenaga Nuklir Nasional, Yogyakarta; 2005

Yazid, P.I. Monte Carlo N-Particle transport system slides. Badan Pengawas Tenaga Nuklir (BAPETEN), Jakarta; 2013.

Wolfgang A.G. Sauerwein, Andrea Wittig Raymond Moss, Yoshinobu Nakagawa. Neutron capture therapy principles and applications. Department of Radiotherapy and Radiation Oncology Philipps-University Marburg, Marburg Germany Springer-Verlag Berlin Heidelberg; 2012.

https://doi.org/10.1007/978-3-642-31334-9

Fauziah, N. A conceptual design of neutron collimator in thermal column of Kartini research reactor for boron neutron capture therapy. Skripsi, Jurusan Teknik Fisika, Universitas Gadjah Mada, Yogyakarta; 2013.

Korea Atomic Energy Research Institute, 2000. Table of Nuclides and Cross Section Plotter. Available from: hyperlink "http://atom.kaeri.re.kr/" http://atom.kaeri.re.kr/ . Accessed 5 Juli 2014.

K SKÖLD, T Gorlia, L Pellettieri, V Giusti . Boron Neutron Capture Therapy for Newly Diagnosed Glioblastoma Multiforme: an Assessment of Clinical Potential . The British Journal of Radiology. 2010; 83:597.

https://doi.org/10.1259/bjr/56953620

Tetsuya Mukawa, Tetsuo Matsumoto, dan Koji Niita. Study on microdosimetry for boron neutron capture therapy. Progress in Nuclear Science and Technology. 2011; 2: 242.

https://doi.org/10.15669/pnst.2.242

Downloads

Published

2015-03-29

How to Cite

Vallenry, B. Y., Widiharto, A., & Sardjono, Y. (2015). PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 16(1), 11–20. Retrieved from https://ejournal.brin.go.id/tridam/article/view/2341