PERHITUNGAN MODEL DWBA DENGAN KOD DWUCK-4: TAMPANG LINTANG HAMBURAN NEUTRON ELASTIK DAN INELASTIK PADA REAKSI 94ZR(N,N)
Keywords:
Nuclear reaction cross section calculation, DWBA, OMP, neutron collision, neutron scatteringAbstract
The calculation of cross section for neutron and 94Zr nuclide collision has been done using the DWBA model and DWUCK-4 code. The optical model potential (OMP) parameters used for the calculation were based on the Becchetti-Greenlees, Rapaport as well as Walter-Guss versions. A Spectrum of total cross section has been resulted with incoming energy range of 1-35 MeV, and a spectrum of energy distribution of cross section has been resulted at the incoming energy of 15 MeV. The calculation result shows that the three OMPs give similar recommendations on cross section for the elastic reaction (n,n) curve, as well as inelastic reaction (n,n’). It is understood from the calculated energy distribution of cross section, that all those OMPs indicate the maximum cross section for the 94Zr(n,n) reaction, En = 15 MeV at almostly the same outgoing energy level, i.e. 7-8 MeV.
References
P.D. Kunz. WUCK-4, a DWBA reaction code. University of Colorado, Boulder, Colorado 1987. Unpublished.
J. Raynal. Perspectives on nuclear data for the next decade. DWBA05 Proceedings of the P(ND)2 Workshop Bruyeres-le-Chatel. Perancis; 26-28 September 2005.
A.J. Koning et al. TALYS-1.2 A nuclear reaction program. User Manual; 22 Desember 2009.
Syafarudin. Analisis spektrum tampang lintang reaksi langsung untuk perhitungan neutronik reaktor generasi lanjut. Prosiding seminar nasional pengembangan energi nuklir. Jakarta; 25 Juni 2009.
Syafarudin. Continuum spectra in one-nucleon transfer reactions --- (p,d) reactions at medium energy region. J. Nucl. Sci. and Technol. Suppl 2002; Vol. 1: 377.
https://doi.org/10.1080/00223131.2002.10875119
S.A. Sultana et al. Analysis of continuum spectra of (n,d) reactions with direct reaction model. Proceedings of the 2003 symposium on nuclear data (JAERI-Conf 2003-005); 2003..
S.A. Sultana et al. Continuum spectra analysis of (p,d) and (n,d) reactions on bi in several tens of mev energy region. Proceedings of the 2004 Symposium on Nuclear Data (JAERI-Conf 2005-005); 2005:p. 143
F. Salvat. Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. 2003; A 68: 012708.
https://doi.org/10.1103/PhysRevA.68.012708
A.S. Kheifets et al. DWBA-G calculations of electron impact ionization of noble gas atoms. J. Phys. B: At. Mol. Opt. Phys. 2008;41: 145201
https://doi.org/10.1088/0953-4075/41/14/145201
A. Jablonski dan C.J. Powell, Surf. Sci. 2000; 463: 29.
https://doi.org/10.1016/S0039-6028(00)00587-2
I. Ahmad et al. Optical model potential of 800 mev/c k+ -meson for 12c and 40ca by the method of inversion. Pramana - J. Phys.2005; 65: 523
https://doi.org/10.1007/BF02704210
A.A. Ebrahim dan S.A.E. Khallaf, Phys. Rev. 2002; C 66: 044614
https://doi.org/10.1103/PhysRevC.66.044614
H.F. Arellano dan H.V. von Geramb. Microscopic analysis of k+ -nucleus elastic scattering based on k+ -nucleon phase shifts. Phys. Rev. 2005; C 72: 025203.
https://doi.org/10.1103/PhysRevC.72.025203
E.Sh. Soukhovitskii et al., Phys. Rev. 2005; C 72: 024604.
C.A. Bertulani, C.M. Campbell, and T. Glasmacher. A computer program for nuclear scattering at intermediate and high energies. Comp. Phys. Comm. 2003; p. 152- 317.
https://doi.org/10.1016/S0010-4655(02)00824-X
T. Belgya et al.. Handbook for calculations of nuclear reaction data. Reference Input Parameter Library-2. IAEA-TECDOC-1506; 2006.
R. Capote et al. A general numerical solution of dispersion relations for the nuclear optical model. J. Phys. G: Nucl. Part. Phys. 2001; 27: B15.
https://doi.org/10.1088/0954-3899/27/8/402
F.D. Becchetti, Jr. dan G.W. Greenlees. Nucleon-nucleus optical-model parameters, A > 40, E < 50 MeV. Phys. Rev., 1969; vol.182: 1190.
https://doi.org/10.2172/4752369
R.L. Walter and P.P. Guss. Nuclear data for basc and applied science. Gordon and Breach Press 1986; vol.2: 1079.
J. Rapaport et al., Nucl. Phys. 1979; A330: 15.