ANALISIS SKENARIO KEGAGALAN SISTEM UNTUK MENENTUKAN PROBABILITAS KECELAKAAN PARAH AP1000

Authors

  • D.T. Sony Tjahyani Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Julwan Hendry Purba Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

Keywords:

Failure scenario, AP1000, probability, severe accident

Abstract

Fukushima accident has shown that severe accident could be occurred, therefore it is important to analyze safety level of nuclear power plants. Based on the recommendations of IAEA expert mission after the Fukushima accident, necessary effort to minimize severe accident by optimizing cooling process. On the safety concept of nuclear facility especially power reactor has been applied defence in depth (DiD) concept. These concept consists of five defense levels which is to prevent and to reduce fission product release to the public and the environment when the power reactor accident happen. On the reactor has been designed system or action that have function to overcome with each those levels. The objective of this paper is to determine severe accident probability by system failure scenario on the cooling process in the reactor. The AP1000 is chosen as the reference plant to be evaluated, because currently this reactor is being built in many countries. The scenario is carried out by combining several system failures included in DiD level 2 and 3. System failure is evaluated by fault tree analysis using SAPHIRE code version 6.76. The analysis results show that the failure probability of system in the DiD level 2 and 3 AP1000 is still below the IAEA criteria limit that is less than 10-2, as well as the probability of severe accident is 6.17 x 10-10. Based on this analysis, it can be concluded that the safety level of AP1000 is high enough, because through system failure scenario is obtained the probability of severe accident is very small.

 

References

International Atomic Energy Agency. Safety of Nuclear Power Plant: Design, SSR-2/1, IAEA, Vienna; 2012, 3-12.

Kementrian Hukum Dan HAM RI. Keselamatan dan keamanan instalasi nuklir. Peraturan Pemerintah No. 54 Tahun 2012; 2014, 22-27.

World Nuclear News, Chinese AP1000 Containment Capped, 2013. Available from: URL: http://www.world-nuclear-news.org. Accessed 26 Agustus 2013.

World Nuclear News. Construction Officially Starts at Summer, 2013. Available from: URL: http://www.world-nuclear-news.org. Accessed 26 Agustus 2013.

IAEA Mission Report. IAEA international fact finding expert mission of the Fukushima Dai-ichi NPP accident following the great east Japan Earthquake and Tsunami, IAEA. Vienna; 2011: 13-18.

Wenisch A., Hirsch H., Kromp R., Mraz G., NPP Loviisa-3: Expert Statement to the EIA Report, Umweltbundesamt GmbH, Vienna; 2008, 15-30.

Cillik I., Vrtik L. PSA analysis focused on Mochovce NPP safety measures evaluation from operational safety point of view. International Conference Nuclear Energy in Central Europe; 2001; 305:1-8 .

Yang J. Development of an integrated risk assessment framework for internal/external and all power modes. Nuclear Engineering And Technology. 2014: 459-470.

https://doi.org/10.5516/NET.03.2012.706

Sony Tjahyani D. T., Ekariansyah A. S. Analisis probabilistik kecelakaan parah PWR sistem pasif untuk meningkatkan manajemen kecelakaan. Prosiding Seminar Nasional SDM Teknologi Nuklir, BATAN, Yogyakarta; 2012, 31-36.

Sony Tjahyani D. T. Analisis keandalan sistem non-keselamatan dalam memperkecil probabilitas kecelakaan parah AP1000. Prosidng Seminar Nasional Pengembangan Energi Nuklir VI, Jakarta; 2013, 311-319.

Sony Tjahyani D. T. Analisis probabilistik terhadap modifikasi sistem untuk meningkatkan keselamatan pada reaktor daya AP1000. Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan Dan Teknologi Nuklir; 2013, 219-225.

International Atomic Energy Agency. Component reliability data for use in probabilistic safety assessment. TECDOC-478, IAEA, Vienna; 1988, 95-297.

Westinghouse Electric Company LLC. AP1000 Pre-construction safety report, UKP-GW GL-732, Pittsburgh; 2008, 190-230.

Westinghouse Electric Company. AP1000 probabilistic risk assessment, Pittsburgh. 2007; 8:1-11.7.

United State Nuclear Regulatory Commission. Passive core cooling system-AP1000 technology: Chapter 4, Human Resources Training & Development; 2010, 1-36.

Westinghouse. Passive safety system and timeline for station blackout, 2012. Available from: URL: http://www.ukap1000application.com. Accessed 27 Agustus 2012.

International Atomic Energy Agency. Deterministic safety analysis for nuclear power plant. SSG-2, Vienna; 2009, 7-12.

Matzie R., Goossen, J. How will the new plants be built. Westinghouse Electric Company LLC; 2008, 36-37.

Sterdis A. AP1000 regulatory overview. Westinghouse Electric Company LLC; 2007, 102- 105.

Mitsubishi Heavy Industries. Probabilistic risk assessment and severe accident evaluation; 2008, 19.1.146-171.

Areva. US EPR final safety analysis report: Probabilistic Risk Assessment and Severe Accident; 2006, 19.1.180-196.

Sofrany A., Susyadi E., Widodo S. Pemodelan sistem pendingin sungkup secara pasif menggunakan RELAP5. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. 2012; 14(3):137- 145

Downloads

Published

2015-03-28

How to Cite

Tjahyani, D. S., & Purba, J. H. (2015). ANALISIS SKENARIO KEGAGALAN SISTEM UNTUK MENENTUKAN PROBABILITAS KECELAKAAN PARAH AP1000. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 16(3), 134–148. Retrieved from https://ejournal.brin.go.id/tridam/article/view/2386