ANALISIS MODEL TERAS 3-DIMENSI UNTUK EVALUASI PARAMETER KRITIKALITAS REAKTOR PWR MAJU KELAS 1000 MW

Authors

  • Tagor Malem Sembiring Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

Keywords:

AP1000, criticality, critical boron concentration, shutdown reactivity

Abstract

After the Fukushima accident, the use of passive safety system becomes an important requirement for the nuclear power plant (NPP). The advanced PWR NPP with 1000 MW (electric) class, designed by Westinghouse, AP1000, a reactor with the passive safety features as well as simple and modular. Before selecting a nuclear power plant, there should be an evaluation of the design parameter. One important parameter in criticality safety is core criticality parameters. Main problem in evaluating the core criticality parameters of the AP1000 is that the material composition data SS304 and H2O in the reflector (top and bottom of core) and the diameter of SS304 absorber are not provided. Therefore the objective of this research is to obtain a three-dimensional model of AP1000 core and it can be applied in the evaluation of the core criticality parameters. The calculation results show that the optimum composition of SS304 and H2O in the top and bottom reflector is 50 vol%, respectively, while the diameter of the SS304 absorber is 0.960 cm. Evaluation of the critical boron concentration showed a significant difference to the design value. Although the main cause of this difference is not clear, but it can be proved that the critical boron concentration is very sensitive to the density of UO2. For shutdown reactivity, AP1000 has a large subcriticality margin for one operating cycle. It can be concluded that the proposed 3-imensional core model of AP1000 can be used as a reference for other core parameter calculation or other analytical tools in order to evaluate the AP1000 reactor design.

 

References

Schulz TL. Westinghouse AP1000 advanced passive plant. Nuclear Engineering and Design. 2006;236:1547-57.

https://doi.org/10.1016/j.nucengdes.2006.03.049

Westinghouse AP1000 Control Document Rev.16 [internet]. US: Westinghouse;2007. Tier 2 Chapter 4 Reactor. Available from: http://adamswebsearch2.nrc.gov/idmws/ViewDocByAccession.asp? AccessionNumber=ML071580939; Accessed 2010 August 3.

X-5 Monte Carlo Team. MCNP - A general Monte Carlo n-particle transport code, Version 5. LA-UR-03-1987. Los Alamos:Los Alamos National Laboratory; 2003

Douglass S., Rahnema F., Margulies J. A stylized three-dimensional PWR whole-core benchmark problem with Gadolinium. Annals of Nuclear Energy. 2010;37:1384-1403

https://doi.org/10.1016/j.anucene.2010.01.015

Huda MQ., Rahman MM., Imtiaz MA., Nguyen KC. Design studies of a typical PWR core using advanced computational tools and techniques (will be published in Annals of Nuclear Energy 2011).

https://doi.org/10.1016/j.anucene.2011.05.002

Rokhmadi, Sembiring TM. Perhitungan kritikalitas MCNP4C-2 pada teras benchmark kisi bahan bakar PWR dengan lubang air dan perturbing rod. Prosiding Seminar Nasional ke-16 Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir; 28 Juli 2010; Surabaya, Indonesia. Tangerang Selatan, PTRKN-BATAN; 2010. P 44-50.

Sembiring TM. Pengaruh data nuklir terbaru dalam perhitungan faktor puncak daya di teras benchmark kisi bahan bakar PWR UO2. Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Penegetahuan dan Teknologi Nuklir; 20 Juli 2010;Yogyakarta, Indonesia. Yogyakarta:PTAPB-BATAN; 2010. p 71 - 9

Ames DE., Tsvetkov PV., Rochau GE., Rodriguez S. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source. Sandia Report, SAND2010-6684. Livermore: Sandia National Laboratories; 2010: p 50

https://doi.org/10.2172/992769

Natesan K., Soppet WK. Hydrogen effects on air oxidation of Zirlo alloy. US NRC Report, NUREG/CR-6851. Washington DC : US NRC; 2010.

Wagner JC, Parks CV. Parametric study of the effect of burnable poison rods for PWR burnup credit. US NRC Report, NUREG/CR-6771. Washington DC : US NRC; 2002.

https://doi.org/10.2172/814219

Westinghouse AP1000 Control Document Rev.16 [internet]. US: Westinghouse;2007. Tier 2 Chapter 5 Reactor Coolant System and Connected Systems, p 5.3-36. Available from: http://adamswebsearch2.nrc.gov/idmws/ ViewDocByAccession.asp? Accession Number=ML071580939; Accessed 2010 August 3

Carter LL., Schwarz RA. MCNP Visual Editor computer code manual. Richland, Visual Editor Consultant; 2005.

Tahara Y., Sekimoto H. Transport equivalent diffusion constants for reflector region in PWRs. Journal of Nuclear Science and Technology. 2002;39:716-28.

https://doi.org/10.1080/18811248.2002.9715253

Downloads

Published

2015-04-04

How to Cite

Sembiring, T. M. (2015). ANALISIS MODEL TERAS 3-DIMENSI UNTUK EVALUASI PARAMETER KRITIKALITAS REAKTOR PWR MAJU KELAS 1000 MW. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 13(2), 78–95. Retrieved from https://ejournal.brin.go.id/tridam/article/view/2391