EVALUASI PARAMETER DESAIN TERMOHIDROLIKA TERAS DAN SUB KANAL PLTN AP1000 PADA KONDISI TUNAK

Authors

  • Muhammad Darwis Isnaini Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Sukmanto Dibyo Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Suroso Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Geni Rina Sunaryo Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Endiah Puji Hastuti Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN
  • Muhammad Subekti Pusat Teknologi dan Keselamatan Reaktor Nuklir, BATAN

Keywords:

Thermal-hydraulic parameters, core and sub channel, AP1000, CAUDVAP, COBRAEN, RELAP5

Abstract

Verification and validation of core thermal-hydraulics parameter design of PWR 1000 nuclear power plants have been carried out. The calculation was done using the computer code CAUDVAP, COBRA-EN and RELAP5. The input data that used for CAUDVAP code are such as vessel and core geometry data (fuel elements, bypass, core barrel and core shroud) and the total flowrate, gave output such as the core and vessel pressure drop, coolant velocity and flowrate distribution in the core. The input data used for COBRA-EN such as the fuel element geometry, linear power, the effective flowrate and the fuel element thermal properties, and gave the otput such as active core and channel pressure drop, the distribution of enthalpy, fuel temperature, cladding temperature, coolant temperature, heat flux, heat transfer coefficient and DNBR. Whereas the input data used for RELAP5 was the fuel rod geometry, heat flux and flowrate, and gave the output such as the pressure drop along the channel, the cladding temperature and coolant temperature. The calculation using CAUDVAP gave results the pressure drop along the core vessel of 271.53 kPa (deviation of -1.26%), the distribution of flowrate through the active core of 48537.9 tons/h (deviation of 0.19%), through the guide thimble and core barrel of 2944.8 ton/h (deviation of - 3.05%) and through the core shroud of 283.2 ton/h (deviation of 9.98%). The calculation results of active core pressure drop using CAUDVAP, COBRA-EN and RELAP5 were found 76.01 kPa, 73.78 kPa and 73.3 kPa, respectively. The difference was caused by the change of core lower support area to active core area were not taken into account in calculation using RELAP5 and COBRA-EN codes. The calculated results using COBRA-EN code for core thermal-hydraulics (channel analysis) showed that the maximum meat temperature revolved by 507.95 – 945.45oC, the maximum cladding surface temperature revolved by 302.15 – 338.75oC, and the minimum DNBR revolved by 2.23 – 6.07. Whereas, the hot sub channel analysis using COBRA-EN and RELAP5 codes showed that the fluid outlet temperature were 329.42oC (deviation of 1.47%) and 324.51oC (dev. -0.05%), respectively, and the maximum heat fluxes were 1634.13 kW/m2 (dev. -0.04%) and 1601.0 kW/m2 (dev. -2.06%), respectively. The overall thermal-hydraulic parameters that obtained from the calculation compared to the design data showed no significant difference, so it could be concluded that the calculation using CAUDVAP, COBRA-EN and RELAP5 codes were valid.

References

AP1000 European Design Control Document, EPS-GW-GL-700 Revision 1: Westinghouse; 2009. Chapter 4 Reactor, p. 4.4-38. Available from : http://www.ukap1000application.com/ doc_pdf_library.aspx. Accessed March 8, 2010.

Mishima K., Thermal-Hydraulics and Safety Analysis of Research Reactor, Academic Lecture. FNCA Workshop on Research Reactor Utilization and Open Symposium, September 7-10, 2009; Hachinohe. Japan: NSRA; 2009.

Pablo Abate, Sergio Paredes. CAUDVAP v2.60: A Computer Program for the Calculus of Flow Distribution and Pressure Drop in Reactor Core. Argentina: Division Ingenieria Nuclear-INVAP; Printed 1996.

Basile D. COBRA-EN: Code system for themal-hydraulics transient analysis of light water reactor fuel assemblies and cores. US DOE: Radiation Safety Information Computational Center; Printed 2010.

RELAP5 Code Development Team. RELAP5/MOD3: Code Manual, User Guide and Input Requirements, NUREG/CR-5535-V2. Washington DC: Idaho National Engineering Laboratory; 1995.

Kundo Misaya. Practical Work of Relap5 Analysis. Japan: NSRA; 2008.

Darwis Isnaini M. Penelitian dan Pengembangan Karakteristik Termohidrolika Teras RSG-GAS. Presentasi Ilmiah Jenjang Peneliti Madya; 19 Agustus 2004; Jakarta, Indonesia. Serpong: P2TRR - BATAN; 2004.

Darwis Isnaini M. Analisis pada Laju Alir Stringer RSG-GAS. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, Vol. 5, No. 1, Pebruari 2003. P2TRR-BATAN; 2003. p.23-38

Darwis Isnaini M. Verifikasi desain geometri rod bahan bakar PWR1000 Tipikal buatan Mitsubishi dan Westinghouse. Prosiding Seminar Nasional TKPFN ke-16, 28 Juli 2010; Surabaya, Indonesia. Tangerang, PTRKN-BATAN; 2010. p.203-210.

Darwis Isnaini M. Perbandingan Desain Termohidrolika Sub-Kanal AP1000-E Dan PWR1000 Tipikal. Prosiding Seminar Keselamatan Nuklir, 5 Agustus 2010; Jakarta Indonesia. Jakarta, BAPETEN; 2010. p.284-294

Darwis Isnaini M. Pemetaan distribusi suhu dan DNBR pada perangkat bahan bakar AP1000-EU. Jurnal Teknologi Reaktor Tri Dasa Mega, Vol. 12, No. 2, Juni 2010. PTRKN-BATAN; 2010. p.103-113.

Dibyo S., Susyadi, Juarsa M., Suroso. Validasi Pemodelan Test Section QUEENII menggunakan RELAP5. Prosiding Seminar Nasional TKPFN ke-16, 28 Juli 2010; Surabaya, Indonesia. Tangerang, PTRKN-BATAN; 2010. p.59-68.

Sukmanto Dibyo, Darwis Isnaini M. Verifikasi model perangkat bahan bakar Reaktor PWR-1000. Prosiding Seminar TKPFN-17, 1 Oktober 2011; Yogyakarta, Indonesia. Tangerang, PTRKN-BATAN; 2011. p.385-395.

Suroso, Sukmanto Dibyo, Darwis Isnaini M. Evaluasi perbandingan kinerja terrmohidrolika sub-kanal teras PWR 1000 tipikal dengan AP-1000. Prosiding Seminar TKPFN-17, 1 Oktober 2011; Yogyakarta, Indonesia. Tangerang, PTRKN-BATAN; 2011. p.396-405.

Todreas N, Kazimi MS. Nuclear Systems II: Elements of Thermal Hydraulic Design. USA: Hemisphere Publishing Corporation; 1990.

Downloads

Published

2013-03-19

How to Cite

Isnaini, M. D., Dibyo, S., Suroso, Sunaryo, G. R., Hastuti, E. P., & Subekti, M. (2013). EVALUASI PARAMETER DESAIN TERMOHIDROLIKA TERAS DAN SUB KANAL PLTN AP1000 PADA KONDISI TUNAK. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 14(1), 15–31. Retrieved from https://ejournal.brin.go.id/tridam/article/view/2403