MANAJEMEN KONVERSI TERAS RSG-GAS BERBAHAN BAKAR SILISIDA TINGKAT MUAT TINGGI
Keywords:
silicide, safety rod, mix core, 5.1 pattern, Batan-FUELAbstract
The usage of high density fuel can extend the reactor operation up to 40 days. Designing of low to high density silicide fueled core conversion has been carried out. The management of core conversion was done gradually using 2 dimensional diffusion code Batan-FUEL. Replacement of unused fuel elements in core using fuel elements reshuffle pattern 5/1, which at the beginning of cycle there are 5 fuel elemnts and 1 control element replaced. By maintaining the existing core configuration, the core conversion can be performed through mix core of 2,96 gU/cm3 - 4,8 gU/cm3 silicide fueled with respect to reactor safety limits requirements. Therefore, the objective of this work is to design the mixed cores on the neutronic performance to achieve safely at first full-silicide core for the reactor with the high uranium meat density. In the design, safety rods were used to increase the decreasing minimum shutdown margin due to high density fuel loading. The analyses results show that silicide core conversion of 2,96 gU/cm3 to 4,8 gU/cm3 density can be performed by means of indirect mix core in two steps i.e. silicide of 2,96 g U/cm3 - 3,55 gU/cm3 core conversion and silicide of 3,55 gU/cm3 - 4,8 gU/cm3 conversion with good performance. The main advantage of using high density silicide fuels of 4.8 gU/cm3 than low density silicide fuels of 2.96 gU/cm3 on the RSG-GAS core is that, the operating cycle length of 18 days could be longer in order to save fuel usage.
References
Anonim. Laporan Analisis Keselamatan RSG-GAS bab V-Reaktor, Revisi 10, BATAN. 2008. p: V41-46
Surian Pinem, Tukiran Surbakti, Jati Susilo. Pengukuran parameter kinetik teras silisida dengan kerapatan 2,96 gU/cc reaktor RSG-GAS. Jurnal Fisika Himpunan Fisika Indonesia 2004;A4: 021801 - 06
Lily Suparlina dan Jati Susilo. Evaluasi Manajemen Teras Reaktor RSG-GAS Berdasarkan Perhitungan Fraksi Bakar. Prosiding PPI-PDIPTN; 2009 p: 131-136
Lily Suparlina. Analisis Peningkatan Fraksi Bakar Buang Untuk Efisiensi Penggunaan Bahan Bakar U3Si2-Al 2,96 gU/cc di Teras RSG-GAS. Prosiding PPI-PDIPTN. 2010 p: 176-182
Liem P.H, Bakri Arbie, T.M. Sembiring, P. Prayoto, R. Nabbi. Fuel management strategy for the new equilibrium silicide core design of RSG GAS(MPR-30). ¬®¯°±²³ Engineering and Design. 1998;'µ¶(3): 207-219
https://doi.org/10.1016/S0029-5493(97)00301-4
Jati Susilo, Analisis pola pemuatan bahan bakar teras setimbang RSG-GAS berbahan bakar U3Si-Al kerapatan 3,55 gU/cc, Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. 2007; 9(2):75-85
Lily Suparlina, T.M. Sembiring. Application of Neutron Diffusion Theory for High Uranium Density Fueled Reactor Core Calculation, Asian Physics Symposium Proceedings. 2005; p: 332-337
Lily Suparlina. Analysis of hot spot factor for Silicide 4.8 gU/Cc RSG-GAS Core. Proceedings of The International Conference on Mathematics and Natural Sciences (ICMNS). 2006; p:1065-68
Surian Pinem, Tagor MS, Setiyanto. Analisis transient teras reaktor RSG-GAS pada saat laju alir pendingin turun dengan menggunakan program MTR-DYN. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. 2009; 11(3):153-161
Setiyanto, T.M. Sembiring, S. Pinem, L. Suparlina. Neutronic analysis of the RSG-GAS silicide core with uranium density of 4.8 g/cc. IAEA Publication International Conference on research Reactors Safe Management and Effective Utilization, IAEA CN-156, STI/PUB/1360 ISBN 978-92-0-160108-7 ISSN 1991-2374 Vienna; 2008.
Peng Hong Liem and, Tagor Malem Sembiring. Design of transition cores of RSG GAS (MPR-30) with higher loading silicide fuel. Journal of Nuclear Engineering and Design. 2010 6: 1433-1442
https://doi.org/10.1016/j.nucengdes.2010.01.028
Ahmad Lashkari, Hossein Khalafi, S. Mohammad Mirvakili, Shokufe Forughi. Neutronic analysis for Tehran Research Reactor mixed-core. Progress in Nuclear Energy. 2012; 60: 31-37.
https://doi.org/10.1016/j.pnucene.2012.04.006
M. Keyvani, M. Arkani, A. Hossni Rokh. Optimization of in-core fuel management strategy of Tehran Research Reactor (TRR) using MCNP-4C. Annals of Nuclear Energy. 2010; 37: 1683-1687
https://doi.org/10.1016/j.anucene.2010.07.012
IAEA. WIMS-D Library Update. IAEA, Vienna, 2007
Liem P.H. Batan-FUEL: A general in-core fuel management code. Journal Atom Indonesia, July 1996 22;2:67-80