ISOLATION, SCREENING, AND ANTIBACTERIAL ACTIVITY OF ENDOPHYTIC FUNGI ASSOCIATED WITH Acanthus ilicifolius L. IN INHIBITING THE GROWTH OF Methicillin-Resistant Staphylococcus aureus (MRSA)
Main Article Content
Abstract
This study examines the phytochemical composition and antibacterial activity of endophytic fungi linked to the mangrove plant A. ilicifolius against methicillin-resistant Staphylococcus aureus (MRSA) in order to determine their bioprospecting potential. The surface-sterilized root, stem, and leaf tissues of A. ilicifolius yielded endophytic fungi. The workflow consisted of screening for viable isolates, culture under controlled circumstances, and molecular identification of the Internal Transcribed Spacer (ITS) section of fungal rDNA. Antibacterial activity was determined using agar well diffusion tests after extraction with methanol, ethyl acetate, and n-hexane solvent fractions. A total of 31 endophytic fungal isolates were recovered: 9 from roots, 15 from stems, and 7 from leaves. Among these, 5 isolates from roots (16.1%), 8 from stems (25.8%), and 5 from leaves (16.1%) exhibited inhibitory effects against MRSA. Isolate AK5, derived from root tissue, demonstrated the highest antibacterial activity and was molecularly identified as Chaetomium globosum strain NW 24 (Accession No. MN326469.1). The isolate revealed optimal growth at pH 5–6, with the maximum wet mycelial biomass (29.73 g) achieved on day 24 under shaker incubation. The methanol and ethyl acetate fractions had a considerably greater anti-MRSA efficacy than the n-hexane fraction. Phytochemical analysis of the methanolic extract indicated the presence of several bioactive components, including phenolics, tannins, flavonoids, saponins, alkaloids, and terpenoids, indicating that these constituents contribute to the reported antibacterial effects. Overall, our findings highlight the potential of A. ilicifolius-derived endophytic fungi as alternate sources of bioactive compounds for treating antibiotic-resistant infections, specifically MRSA.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
‘Aini, K., Elfita, E., Widjajanti, H., Setiawan, A., Kurniawati, A.R., 2022. Antibacte-rial activity of endophytic fungi isolat-ed from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas J. Biol. Divers. 23. DOI:10.1093/femsre/fuz014.
Anam, S., Syamsidi, A., Tunreng, M.F.U., Djaleha, H.F., Arisca, W.N., Syaputra, G., Iklima, Indriani, M.F., Widodo, A., Pratiwi, R., Yuliet, Razak, A.R., 2024. Isolation of Endophytic Fungi from Rui (Harrisonia perforata (Blanco) Merr.) and Determining Their Antibacterial, Antioxidant, and Cytotoxic Activity. HAYATI J. Biosci. 31, 443–456. DOI: 10.4308/hjb.31.3.443-456
Ariantari, N.P., Putra, I.P.Y.A., Leliqia, N.P.E., Yustiantara, P.S., Proborini, M.W., Nugraheni, N., Zulfin, U.M., Jenie, R.I., Meiyanto, E., 2023. Anti-bacterial and cytotoxic secondary me-tabolites from endophytic fungi asso-ciated with Antidesma bunius leaves. J. Appl. Pharm. Sci. DOI: 10.7324/JAPS.2023.101347
Awashank, A., Fulke, A.B., Dora, G.U., J., K., Tilvi, S., 2024. Anticancer and anti-inflammatory activity and untargeted metabolite profiling by UPLC-ESI-QTOF of crude extracts of mangrove endophytic fungus Aspergillus stella-tus LM-03. Nat. Prod. Res. 1–10. DOI: 10.1080/14786419.2023.2301007
Bai, Z.-Q., Lin, X., Wang, Yizhu, Wang, J., Zhou, X., Yang, B., Liu, J., Yang, X., Wang, Yi, Liu, Y., 2014. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 95, 194–202. DOI: 10.1016/j.fitote.2014.03.021
Bonev, B., Hooper, J., Parisot, J., 2008. Principles of assessing bacterial sus-ceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 61, 1295–1301. DOI: 10.1093/jac/dkn090
Brown, K., Uwiera, R.R.E., Kalmokoff, M.L., Brooks, S.P.J., Inglis, G.D., 2017. An-timicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effec-tive alternatives. Int. J. Antimicrob. Agents 49, 12–24. DOI: 10.1016/j.ijantimicag.2016.08.006
Cai, R., Chen, S., Long, Y., Li, C., Huang, X., She, Z., 2017. Depsidones from Talaromyces stipitatus SK-4, an en-dophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem. Lett. 20, 196–199. DOI: 10.1016/j.phytol.2017.04.023
Chua, R.W., Song, K.P., Ting, A.S.Y., 2022. Antimicrobial activities and phyto-chemical screening of endophytic fun-gi isolated from Cymbidium and Den-drobium orchids. South African J. Bot. 151, 909–918. DOI: 10.1016/j.sajb.2022.11.015
De Silva, N.I., Brooks, S., Lumyong, S., Hyde, K.D., 2019. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 33, 133–148. DOI: 10.1016/j.fbr.2018.10.001
Deshmukh, S.K., Prakash, V., Ranjan, N., 2018. Marine Fungi: A Source of Po-tential Anticancer Compounds. Front. Microbiol. 8. DOI: 10.3389/fmicb.2017.02536
Drożdżyński, P., Rutkowska, N., Rodziewicz, M., Marchut-Mikołajczyk, O., 2024. Bioactive Compounds Pro-duced by Endophytic Bacteria and Their Plant Hosts—An Insight into the World of Chosen Herbaceous Ruderal Plants in Central Europe. Molecules 29, 4456. DOI: 10.3390/molecules29184456
Elfita, Muharni, Mardiyanto, Fitrya, Nurmawati, E., Widjajanti, H., 2020. Triacylglycerols Produced by Biomass of Endophytic Fungus Neopestalo-tiopsis Surinamensis from the Scurru-la Atropurpurea Leaves. Indones. J. Fundam. Appl. Chem. 5, 95–100.
Gupta, A., Chandra Pandey, B., Yaseen, M., Kushwaha, R., Shukla, M., Chaudhary, P., Manna, P.P., Singh, A., Tiwari, I., Nath, G., Kumari, N., 2025. Exploring anticancer, antioxi-dant, and antimicrobial potential of Aspergillus flavus, a fungal endophyte isolated from Dillenia indica leaf cal-lus. Heliyon 11, e42142. DOI: 10.1016/j.heliyon.2025.e42142
Hagag, A., Abd El-Kader, A.M., Abdel-wahab, M.F., Ahmed, E.F., Yahia, R., Ghanem, N., Abdel-Rahman, I.M., Fouad, M.A., Zahran, E.M., 2024. An-tibiofilm potential of 6-methoxymellein from geranium-associated Aspergillus caespitosus endophyte against clinical isolates of dermatophytes: Phyto-chemical, in silico and in vitro investi-gation. South African J. Bot. 167, 448–456. DOI: 10.1016/j.sajb.2024.02.037
Handayani, D., Ananda, N., Artasasta, M.A., Ruslan, R., Fadriyanti, O., Tallei, T.E., Fadly, M., Rachman, I., Setyawan, A., 2019. Synthesis, anticancer activity, and docking study of N-acetyl
pyrazolines from veratraldehyde. J. Appl. Pharm. Sci. 9, 14–20. DOI: 10.7324/JAPS.2019.90303
Hashem, A.H., Attia, M.S., Kandil, E.K., Fawzi, M.M., Abdelrahman, A.S., Khader, M.S., Khodaira, M.A., Emam, A.E., Goma, M.A., Abdelaziz, A.M., 2023. Bioactive compounds and bio-medical applications of endophytic fungi: a recent review. Microb. Cell Fact. 22, 107. DOI: 10.1186/s12934-023-02118-x
Hiras Habisukan, U., Elfita, E., Widjajanti, H., Setiawan, A., Kurniawati, A.R., 2021. Diversity of endophytic fungi in Syzygium aqueum. Biodiversitas J. Biol. Divers. 22. DOI: 10.13057/biodiv/d220307
Hussein, J.M., Myovela, H., Tibuhwa, D.D., 2024. Diversity of endophytic fungi from medicinal plant Oxalis latifolia and their antimicrobial potential against selected human pathogens. Saudi J. Biol. Sci. 31, 103958. DOI: 10.1016/j.sjbs.2024.103958
Khalil, A.M.A., Hassan, S.E.-D., Alsharif, S.M., Eid, A.M., Ewais, E.E.-D., Azab, E., Gobouri, A.A., Elkelish, A., Fouda, A., 2021. Isolation and Characteriza-tion of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachy-clada as Plant Growth-Promoting. Bi-omolecules 11, 140. DOI: 10.3390/biom11020140
Khwaja, N.U.D., Arunagirinathan, G., 2021. Efficacy and Cardiovascular Safety of Alpha Glucosidase Inhibitors. Curr. Drug Saf. 16, 122–128. DOI: 10.2174/1574886315666201217100445
Kim, Y.B., Seo, K.W., Jeon, H.Y., Lim, S.-K., Lee, Y.J., 2018. Characteristics of the antimicrobial resistance of Staphy-lococcus aureus isolated from chicken meat produced by different integrated broiler operations in Korea. Poult. Sci. 97, 962–969. DOI: 10.3382/ps/pex357
Laws, M., Shaaban, A., Rahman, K.M., 2019. Antibiotic resistance breakers: current approaches and future direc-tions. FEMS Microbiol. Rev. 43, 490–516.DOI: 10.1093/femsre/fuz014
Li, X.-D., Li, X.-M., Wang, B.-G., Li, X., 2024. Antimicrobial sesterterpenoids with a unique 5/8/6/5 tetracyclic car-bon-ring-system and diepoxide polyketides from a deep sea-sediment-sourced fungus Chaetomi-um globosum SD-347. Org. Biomol. Chem. 22, 3979–3985. DOI: 10.1039/D4OB00449C
Liu, Y.-F., Du, H.-F., Zhang, Y.-H., Liu, Z.-Q., Qi, X.-Q., Luo, D.-Q., Cao, F., 2024. Chaeglobol A, an unusual octo-cyclic sterol with antifungal activity from the marine-derived fungus Chae-tomium globosum HBU-45. Chinese Chem. Lett. 109858. DOI: 10.1016/j.cclet.2024.109858
M.R., R., Mohan, A.S., Kesavan, D., Sara-san, M., Philip, R., 2024. Endophytic fungi of spurred mangrove, Ceriops tagal and its bioactivity potential: Pre-dominance of Aspergillus species and its ecological significance. The Mi-crobe 4, 100144. DOI: 10.1016/j.microb.2024.100144
Manganyi, M.C and Ateba, C.N., 2022. Un-tapped Potentials of Endophytic Fun-gi: A Review of Novel Bioactive Com-pounds with Biological Applications. Microorganisms. 6;8(12):1934. DOI: 10.3390/microorganisms8121934
Masimen, M.A.A., Harun, N.A., Maulidiani, M., Ismail, W.I.W., 2022. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibi-otics 11, 951. DOI: 10.3390/antibiotics11070951
Masumoto, H., Degawa, Y., 2019. The ef-fect of surface sterilization and the type of sterilizer on the genus compo-sition of lichen-inhabiting fungi with notes on some frequently isolated genera. Mycoscience 60, 331–342. DOI: 10.1016/j.myc.2019.07.004
Mendes, R.E., Mendoza, M., Banga Singh, K.K., Castanheira, M., Bell, J.M., Turnidge, J.D., Lin, S.S.F., Jones, R.N., 2013. Regional Resistance Sur-veillance Program Results for 12 Asia-Pacific Nations (2011). Antimicrob. Agents Chemother. 57, 5721–5726. DOI: 10.1128/AAC.01121-13
Moon, D.C., Tamang, M.D., Nam, H.-M., Jeong, J.-H., Jang, G.-C., Jung, S.-C., Park, Y.-H., Lim, S.-K., 2015. Identifi-cation of Livestock-Associated Methi-cillin-Resistant Staphylococcus aure-us Isolates in Korea and Molecular Comparison Between Isolates from Animal Carcasses and Slaughter-house Workers. Foodborne Pathog. Dis. 12, 327–334. DOI: 10.1089/fpd.2014.1868
Mulligan, M.E., Murray-Leisure, K.A., Rib-ner, B.S., Standiford, H.C., John, J.F., Korvick, J.A., Kauffman, C.A., Yu, V.L., 1993. Methicillin-resistant Staph-ylococcus aureus: A consensus re-view of the microbiology, pathogene-sis, and epidemiology with implica-tions for prevention and management. Am. J. Med. 94, 313–328. DOI: 10.1016/0002-9343(93)90063-U
Mulyani, Y., Wulandari, A.P., Sinaga, S.E., Safriansyah, W., Azhari, A., Purbaya, S., Abdullah, F.F., Farabi, K., Shiono, Y., Supratman, U., 2024. Antibacterial activities and molecular identification of endophytic fungi isolated from mangrove Avicennia marina. Biodi-versitas J. Biol. Divers. 24. DOI: 10.13057/biodiv/d241254
Myovela, H., Hussein, J., Tibuhwa, D., 2024. Treasures in our backyard: un-leashing the biotechnological poten-tials of endophytic fungi from Tanza-nian mangroves. Nat. Prod. Res. 1–9. DOI: 10.1080/14786419.2024.2395492
Nadimpalli, M.L., Marks, S.J., Montealegre, M.C., Gilman, R.H., Pajuelo, M.J., Saito, M., Tsukayama, P., Njenga, S.M., Kiiru, J., Swarthout, J., Islam, M.A., Julian, T.R., Pickering, A.J., 2020. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 5, 787–795. DOI: 10.1038/s41564-020-0722-0
Natarajan, S., Rameshbabu, V., Ariharasu-dhan, S., Hayavadana, J., Rajpurohit, T., Prakash, C., 2024. Antimicrobial properties of Acanthus ilicifolius and determination of phytochemical com-position. Biomass Convers. Biorefin-ery 14, 29719–29726. DOI: 10.1007/s13399-023-04723-7
Ni, S., Li, J., Li, M., 2018. Two New Dolab-rane Diterpenes from the Chinese Mangrove Ceriops tagal. Chem.
Biodivers. 15. DOI: 10.1002/cbdv.201700563
Nguyen, B.V.G., Tran, L.X.T., Ha-Nguyen, A-T., Le, M-T., Vo, T-H., Vu, GP., Nguyen, P-V, 2025. Endophytic fungi isolated from Vietnamese nut grass (Cyperus rotundus L. Cyperaceae) – A promising solution to mitigate the prime phenomenon of antibiotic re-sistance. Heliyon. 11(3):e41920. DOI: 10.1016/j.heliyon.2025.e41920
Nobrega, D.B., Naqvi, S.A., Dufour, S., Deardon, R., Kastelic, J.P., De Buck, J., Barkema, H.W., 2020. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: Re-sults from a network meta-analysis. J. Dairy Sci. 103, 10585–10603. DOI: 10.3168/jds.2020-18365
Pallem, C., 2019. Solid-state fermentation of corn husk for the synthesis of Aspara-ginase by Fusarium oxysporum. Asian J. Pharm. Pharmacol. 5, 678–681. DOI: 10.31024/ajpp.2019.5.4.5
Prenafeta, A., Sitjà, M., Holmes, M.A., Pat-erson, G.K., 2014. Short communica-tion: Biofilm production characteriza-tion of mecA and mecC methicillin-resistant Staphylococcus aureus iso-lated from bovine milk in Great Britain. J. Dairy Sci. 97, 4838–4841. DOI: 10.3168/jds.2014-7986
Prestinaci, F., Pezzotti, P., Pantosti, A., 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318. DOI: 10.1179/2047773215Y.0000000030
Putra, I.P.Y.A., Utami, K.S., Hardini, J., Wirasuta, I.M.A.G., Ujam, N.T., Ari-antari, N.P., 2023. Fermentation, bio-activity and molecular identification of endophytic fungi isolated from man-grove Ceriops tagal. Biodiversitas J. Biol. Divers. 24. DOI: 10.13057/biodiv/d240565
Rajreepa, T., Sudem, W., Chiranjib, M., Subham, R., Kumananda, T., 2020. Antimicrobial secondary metabolites obtained from endophytic fungi inhab-iting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. J. Appl. Pharm. Sci. DOI: 10.7324/JAPS.2020.10912
Sadrati, N., Zerroug, A., Demirel, R., Harzal-lah, D., 2023. Anti-multidrug-resistant Staphylococcus aureus and anti-dermatophyte activities of secondary metabolites of the endophytic fungus Penicillium brevicompactum ANT13 associated with the Algerian endemic plant Abies numidica. Arch. Microbiol. 205, 110. DOI: 10.1007/s00203-023-03452-9
Sahu, P.K., Tilgam, J., Mishra, S., Hamid, S., Gupta, A., K., J., Verma, S.K., Kharwar, R.N., 2022. Surface sterili-zation for isolation of endophytes: En-suring what (not) to grow. J. Basic Mi-crobiol. 62, 647–668. DOI: 10.1002/jobm.202100462
Santosaningsih, D., Erikawati, D., Hakim, I.A., Santoso, S., Hidayat, M., Suwenda, A.H., Puspitasari, V., Ir-hamni, I., Kuntaman, K., van Arkel, A.L.E., Terlouw, L.G., Oudenes, N., Willemse-Erix, D., Snijders, S. V., Erler, N.S., Verbrugh, H.A., Severin, J.A., 2019. Reducing transmission of methicillin-resistant Staphylococcus aureus in a surgical ward of a re-source-limited hospital in Indonesia: an intervention study. Infect. Prev. Pract. 1, 100028. DOI: 10.1016/j.infpip.2019.100028
Septiana, E., Sukarno, N., Sukarno, Simanjuntak, P., 2017. Endophytic Fungi Associated With Turmeric (Cur-cuma longa L.) Can Inhibit Histamine-Forming Bacteria in Fish. HAYATI J. Biosci. 24, 46–52. 10.1016/j.hjb.2017.05.004
Shah, S.P., George, J.T., Chunduri, J.R., 2024. Distribution and diversity stud-ies of endophytic and rhizospheric fungi associated with the mangrove, Acanthus ilicifolius, using amplicon sequencing-based metagenomic ap-proach. Ecol. Genet. Genomics 31, 100261. DOI: 10.1016/j.egg.2024.100261
Sharma, D., Pramanik, A., Agrawal, P.K., 2016. Evaluation of bioactive second-ary metabolites from endophytic fun-gus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6, 210. DOI: 10.1007/s13205-016-0518-3
Singh, R., Dubey, A.K., 2018. Diversity and Applications of Endophytic Actinobac-teria of Plants in Special and Other Ecological Niches. Front. Microbiol. 9. DOI: 10.3389/fmicb.2018.01767
Sopalun, K., Laosripaiboon, W., Wachira-chaikarn, A., Iamtham, S., 2021. Bio-logical potential and chemical compo-sition of bioactive compounds from endophytic fungi associated with thai mangrove plants. South African J. Bot. 141, 66–76. DOI: 10.1016/j.sajb.2021.04.031
Sulis, G., Sayood, S., Gandra, S., 2023. How can we tackle the overuse of an-tibiotics in low- and middle-income countries? Expert Rev. Anti. Infect. Ther. 21, 1189–1201. DOI: 10.1080/14787210.2023.2263643
Szafraniec, G.M., Szeleszczuk, P., Dolka, B., 2022. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet. Q. 42, 21–40. DOI: 10.1080/01652176.2022.2033880
Toppo, P., Jangir, P., Mehra, N., Kapoor, R., Mathur, P., 2024. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their di-verse role in agricultural and industrial sectors. Sci. Rep. 14, 588. DOI: 10.1038/s41598-023-51057-5
Tuerdibieke, M., Tian, X., An, X., Feng, Y., Liu, W., 2024. Isolation and identifica-tion of endophytic fungi from Alhagi sparsifolia Shap. and their antibacteri-al activity. Heliyon 10, e39003. DOI: 10.1016/j.heliyon.2024.e39003
Wang, K.-W., Wang, S.-W., Wu, B., Wei, J.-G., 2014. Bioactive Natural Com-pounds from the Mangrove Endophyt-ic Fungi. Mini-Reviews Med. Chem. 14, 370–391. DOI: 10.2174/1389557514666140220122829
Wang, Z., Zheng, Y., Lu, W., Yang, J., Feng, Y., Li, Z., Li, N., Yang, Y., Wang, Q., An, L., 2024. Antioxidant protection of a polysaccharide pro-duced by Chaetomium globosum CGMCC 6882 on H2O2-challenged HepG2 cells. Carbohydr. Polym. Technol. Appl. 8, 100530. DOI: 10.1016/j.carpta.2024.100530
Wang, Z., Zhou, X., Liang, X., Zheng, X., Shu, Z., Sun, Q., Wang, Q., Li, N., 2023. Antioxidant and antibacterial ac-tivities of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 233, 123628. DOI: 10.1016/j.ijbiomac.2023.123628
Winarto, W., Milheiriço, C., Kuntaman, K., Santoso, S., Budayanti, N.S., van Belkum, A., Verbrugh, H.A., Willemse-Erix, D., Severin, J.A., Farida, H., Hadi, P., Santosaningsih, D., Lestari, E.S., Hapsari, R., Maquelin, K., 2014. Epidemiology of Staphylococcus au-reus Harboring the mecA or Panton-Valentine Leukocidin Genes in Hospi-tals in Java and Bali, Indonesia. Am. J. Trop. Med. Hyg. 90, 728–734. DOI: 10.4269/ajtmh.13-0734
Wiradana, P.A., Permatasari, A.A.A.P., Sa-ri, N.K.Y., Widhiantara, I.G., Sandhi-ka, I.M.G.S., Waruwu, E., Fimaputra, J.M., Panjaitan, N.S.D., Putri, F.R., Ansori, A.N.M., 2024. Isolation and Molecular Identification of Endophytic Fungi Associated with Brown Algae for Inhibiting Escherichia coli ESBL. J. Appl. Vet. Sci. Technol. 5, 31–41. DOI: 10.20473/javest.V5.I1.2024.31-41
Yap, L.S., Lee, W.L., Ting, A.S.Y., 2023. Bioprocessing and purification of ex-tracellular L-asparaginase produced by endophytic Colletotrichum gloeo-sporioides and its anticancer activity. Prep. Biochem. Biotechnol. 53, 653–671. DOI: 10.1080/10826068.2022.2122064
Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P.-J., Wang, Y., Ma, L.-F., Zhu, Y.-H., 2009. Broad-Spectrum Antimicrobial Epiphytic and Endophyt-ic Fungi from Marine Organisms: Iso-lation, Bioassay and Taxonomy. Mar. Drugs 7, 97–112. DOI: 10.3390/md7020097