TOTAL LIGNIN CONTENT AND AGROMORPHOLOGICAL CHARACTER DIVERSITIES OF 30 INDONESIAN RICE (Oryza sativa L.) ACCESSIONS
Main Article Content
Abstract
Lignin is one of lignocellulosic components in vascular plants, essential in plant mechanical properties, water transport, and defense against pathogens. Furthemore, lignin has been applied in various industry. This study aimed to explore variation of lignin content and its-related morphological traits of Indonesian rice accessions, providing beneficial information for breeding approaches to improve utilization characteristics of grass biomass. Therefore, the total lignin contents of thirty Indonesian rice accessions using Thioglycolic Acid Lignin (TGAL) method and their correlation to seven agromorphological characters using Pearson correlation analysis were investigated. Variation of lignin content ranged from 8.38 to 20.75% (of cell wal residue, CWR), and the average value was 13.55%. Correlation analysis showed that lignin total positively correlated with plant height, stem length, panicle length, stem diameter, total fresh weight, and panicle weight per tiller. On the other hand, the number of tillers had a significantly negative correlation to lignin contents.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD (2016) RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels 9:270. doi: 10.1186/s13068-016-0683-y
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938
Bush DR, Leach JE (2007) Translational genomics for bioenergy production: There’s room for more than one model. Plant Cell 19:2971–2973. doi: 10.1105/tpc.107.191040
Carrillo MA, Staggenborg SA, Pineda JA (2014) Washing sorghum biomass with water to improve its quality for combustion. Fuel 116:427–431. doi: 10.1016/j.fuel.2013.08.028
Christensen CSL, Rasmussen SK (2019) Low lignin mutants and reduction of lignin content in grasses for increased utilisation of lignocellulose. Agronomy 9:256. doi: 10.3390/agronomy9050256
Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 11:107–117. doi: 10.1111/gcbb.12586
Del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935. doi: 10.1021/jf301002n
Domínguez-Robles J, Cárcamo-Martínez Á, Stewart SA, Donnelly RF, Larrañeta E, Borrega M (2020) Lignin for pharmaceutical and biomedical applications – Could this become a reality? Sustain Chem Pharm 18:100320. doi: 10.1016/j.scp.2020.100320
Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. doi: 10.1016/j.pmatsci.2017.12.001
Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16. doi: 10.1002/elsc.201400196
Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839. doi: 10.2135/cropsci2004.0238
Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño MÁ, Cuello J, Guéra A, Esteban-Carrasco A, Zapata JM (2013) Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta 237:1599–1612. doi: 10.1007/s00425-013-1865-5
Hussain S, Iqbal N, Pang T, Khan MN, Liu W, Yang W (2019) Weak stem under shade reveals the lignin reduction behavior. J Integr Agric 18:496–505. doi: 10.1016/S2095-3119(18)62111-2
Itoh T (1990) Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung 44:191–200. doi: 10.1515/hfsg.1990.44.3.191
Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE (2011) Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiol 155:157–168. doi: 10.1104/pp.110.165654
Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HCA, Lee S, Smith BG, Lu F, Sedbrook JC, Sibout R, Grabber JH, Runge TM, Mysore KS, Harris PJ, Bartley LE, Ralph J (2016) Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci Adv 2:e1600393. doi: 10.1126/sciadv.1600393
Kasirajan L, Valiyaparambth R, Kubandiran A, Velu J (2020) Isolation, cloning and expression analysis of cinnamyl alcohol dehydrogenase (CAD) involved in phenylpropanoid pathway of Erianthus arundinaceus, a wild relative of sugarcane. 3 Biotech 10:11. doi: 10.1007/s13205-019-1998-8
Key RE, Bozell JJ (2016) Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustain Chem Eng 4:5123–5135. doi: 10.1021/acssuschemeng.6b01319
Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T (2017) MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol 34:7–15. doi: 10.5511/plantbiotechnology.16.1201a
Kuai J, Sun Y, Zhou M, Zhang P, Zuo Q, Wu J, Zhou G (2016) The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crop Res 199:89–98. doi: 10.1016/j.fcr.2016.09.025
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol 174:972–985. doi: 10.1104/pp.16.01973
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C (2021) Tricin biosynthesis and bioengineering. Front Plant Sci 12:733198. doi: 10.3389/fpls.2021.733198
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295. doi: 10.1104/pp.114.253757
Lebedev VG, Shestibratov KA (2021) Genetic engineering of lignin biosynthesis in trees: Compromise between wood properties and plant viability. Russ J Plant Physiol 68:596–612. doi: 10.1134/S1021443721030109
Lempang M (2016) Pemanfaatan lignin sebagai bahan perekat kayu. Bul Eboni 13:139–150. doi: 10.20886/buleboni.5087
Li M, Pu Y, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45. doi: 10.3389/fchem.2016.00045
Li W, Tian Z, Yu D (2015) WRKY13 acts in stem development in Arabidopsis thaliana. Plant Sci 236:205–213. doi: 10.1016/j.plantsci.2015.04.004
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. doi: 10.3389/fpls.2017.01867
Marita JM, Hatfield RD, Rancour DM, Frost KE (2014) Identification and suppression of the p-coumaroyl CoA: Hydroxycinnamyl alcohol transferase in Zea mays L. Plant J 78:850–864. doi: 10.1111/tpj.12510
Menucelli JR, Amorim EP, Freitas MLM, Zanata M, Cambuim J, de Moraes MLT, Yamaji FM, da Silva Júnior FG, Longui EL (2019) Potential of Hevea brasiliensis Clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on higher heating value. BioEnergy Res 12:992–999. doi: 10.1007/s12155-019-10041-6
Miyamoto T, Yamamura M, Tobimatsu Y, Suzuki S, Kojima M, Takabe K, Terajima Y, Mihashi A, Kobayashi Y, Umezawa T (2018) A comparative study of the biomass properties of Erianthus and sugarcane: lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Biosci Biotechnol Biochem 82:1143–1152. doi: 10.1080/09168451.2018.1447358
Mofijur M, Mahlia TMI, Logeswaran J, Anwar M, Silitonga AS, Rahman SMA, Shamsuddin AH (2019) Potential of rice industry biomass as a renewable energy source. Energies 12:4116. doi: 10.3390/en12214116
Pazhany AS, Henry RJ (2019) Genetic modification of biomass to alter lignin content and structure. Ind Eng Chem Res 58:16190–16203. doi: 10.1021/acs.iecr.9b01163
Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sedbrook JC (2014) P-Coumaroyl-CoA: Monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726. doi: 10.1111/tpj.12420
Ratner B (2009) The correlation coefficient: Its values range between +1/-1, or do they? J Target Meas Anal Mark 17:139–142. doi: 10.1057/jt.2009.5
Reyes L, Abdelouahed L, Mohabeer C, Buvat JC, Taouk B (2021) Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Convers Manag 244:114459. doi: 10.1016/j.enconman.2021.114459
Rivai RR, Miyamoto T, Awano T, Takada R, Tobimatsu Y, Umezawa T, Kobayashi M (2021) Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Sci Rep 11:23309. doi: 10.1038/s41598-021-02570-y
Rivai RR, Miyamoto T, Awano T, Yoshinaga A, Chen S, Sugiyama J, Tobimatsu Y, Umezawa T, Kobayashi M (2022) Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. Plant Sci 321:111325. doi: 10.1016/j.plantsci.2022.111325
Santos RB, Hart PW, Jameel H, Chang H-M (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. BioResour 8:1456–1477. doi: 10.15376/biores.8.1.1456-1477
Sheikh GG, Ganai AM, Reshi PA, Bilal S, Mir S, Masood D (2018) Improved paddy straw as ruminant feed: A review. Agric Rev 39:137-143. doi: 10.18805/ag.r-1667
Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419. doi: 10.1146/annurev.arplant.53.092401.134447
Silvy N, Reza S, Uddin N, Akther M (2018) Comparison between different components of some available hardwood and softwood in Bangladesh. IOSR J Biotechnol Biochem 4:1–5. doi: 10.9790/264X-04010105
Supanchaiyamat N, Jetsrisuparb K, Knijnenburg JTN, Tsang DCW, Hunt AJ (2019) Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour Technol 272:570–581. doi: 10.1016/j.biortech.2018.09.139
Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340. doi: 10.5511/plantbiotechnology.26.337
Takeda Y, Tobimatsu Y, Yamamura M, Takano T, Sakamoto M, Umezawa T (2019) Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition. J Wood Sci 65:6. doi: 10.1186/s10086-019-1784-6
Tobimatsu Y, Schuetz M (2019) Lignin polymerization: How do plants manage the chemistry so well? Curr Opin Biotechnol 56:75–81. doi: 10.1016/j.copbio.2018.10.001
Umezawa T (2018) Lignin modification in planta for valorization. Phytochem Rev 17:1305–1327. doi: 10.1007/s11101-017-9545-x
Umezawa T, Tobimatsu Y, Yamamura M, Miyamoto T, Takeda Y, Koshiba T, Takada R, Lam PY, Suzuki S, Sakamoto M (2020) Lignin metabolic engineering in grasses for primary lignin valorization. Lignin 1:30–41
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi: 10.1104/pp.110.155119
Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16:3065–3083. doi: 10.1016/j.rser.2012.02.054
Wahyuni Y, Miyamoto T, Hartati H, Widjayantie D, Windiastri VE, Sulistyowati Y, Rachmat A, Hartati NS, Ragamustari SK, Tobimatsu Y, Nugroho S, Umezawa T (2019) Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Ind Crops Prod 142:111840. doi: 10.1016/j.indcrop.2019.111840
Wang J, Feng J, Jia W, Fan P, Bao H, Li S, Li Y (2017) Genome-wide identification of sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci 8:714. doi: 10.3389/fpls.2017.00714
Wang P, Dudareva N, Morgan JA, Chapple C (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. Curr Opin Chem Biol 29:32–39. doi: 10.1016/j.cbpa.2015.08.006
Wang S, Zou C, Yang H, Lou C, Cheng S, Peng C, Wang C, Zou H (2021) Effects of cellulose, hemicellulose, and lignin on the combustion behaviours of biomass under various oxygen concentrations. Bioresour Technol 320:124375. doi: 10.1016/j.biortech.2020.124375
Wi SG, Choi IS, Kim KH, Kim HM, Bae H-J (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6:166. doi: 10.1186/1754-6834-6-166
Wistara NJ, Bahri S, Pari G (2020) Biopellet properties of agathis wood fortified with its peeled-off bark. IOP Conf Ser Mater Sci Eng 935:012047. doi: 10.1088/1757-899X/935/1/012047
Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287:8347–8355. doi: 10.1074/jbc.M111.284497
Wu Z, Wang N, Hisano H, Cao Y, Wu F, Liu W, Bao Y, Wang Z, Fu C (2019) Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol J 17:836-845. doi: 10.1111/pbi.13019
Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of B-O-4 substructures in lignin. Plant Biotechnol 29:419-423. doi: 10.5511/plantbiotechnology.12.0627a
Yamamura M, Noda S, Hattori T, Shino A, Kikuchi J, Takabe K, Tagane S, Gau M, Uwatoko N, Mii M, Suzuki S, Shibata D, Umezawa T (2013) Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnol 30:25–35. doi: 10.5511/plantbiotechnology.12.1127a
Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers (Basel) 11:751. doi: 10.3390/polym11050751
Yanuartono Y, Purnamaningsih H, Indarjulianto S, Nururrozi A (2017) Potensi jerami sebagai pakan ternak ruminansia. J Ilmu-Ilmu Peternak 27:40–62. doi: 10.21776/ub.jiip.2017.027.01.05
Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:98–45. doi: 10.1016/j.copbio.2013.09.008