TOTAL LIGNIN CONTENT AND AGROMORPHOLOGICAL CHARACTER DIVERSITIES OF 30 INDONESIAN RICE (Oryza sativa L.) ACCESSIONS

Main Article Content

Satya Nugroho

Abstract

Lignin is one of lignocellulosic components in vascular plants, essential in plant mechanical properties, water transport, and defense against pathogens. Furthemore, lignin has been applied in various industry. This study aimed to explore variation of lignin content and its-related morphological traits of Indonesian rice accessions, providing beneficial information for breeding approaches to improve utilization characteristics of grass biomass. Therefore, the total lignin contents of thirty Indonesian rice accessions using Thioglycolic Acid Lignin (TGAL) method and their correlation to seven agromorphological characters using Pearson correlation analysis were investigated. Variation of lignin content ranged from 8.38 to 20.75% (of cell wal residue, CWR), and the average value was 13.55%. Correlation analysis showed that lignin total positively correlated with plant height, stem length, panicle length, stem diameter, total fresh weight, and panicle weight per tiller. On the other hand, the number of tillers had a significantly negative correlation to lignin contents.

Article Details

How to Cite
Nugroho, S. (2023). TOTAL LIGNIN CONTENT AND AGROMORPHOLOGICAL CHARACTER DIVERSITIES OF 30 INDONESIAN RICE (Oryza sativa L.) ACCESSIONS. Jurnal Bioteknologi Dan Biosains Indonesia, 9(2), 182–194. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1754
Section
Articles

References

Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD (2016) RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels 9:270. doi: 10.1186/s13068-016-0683-y

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938

Bush DR, Leach JE (2007) Translational genomics for bioenergy production: There’s room for more than one model. Plant Cell 19:2971–2973. doi: 10.1105/tpc.107.191040

Carrillo MA, Staggenborg SA, Pineda JA (2014) Washing sorghum biomass with water to improve its quality for combustion. Fuel 116:427–431. doi: 10.1016/j.fuel.2013.08.028

Christensen CSL, Rasmussen SK (2019) Low lignin mutants and reduction of lignin content in grasses for increased utilisation of lignocellulose. Agronomy 9:256. doi: 10.3390/agronomy9050256

Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 11:107–117. doi: 10.1111/gcbb.12586

Del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935. doi: 10.1021/jf301002n

Domínguez-Robles J, Cárcamo-Martínez Á, Stewart SA, Donnelly RF, Larrañeta E, Borrega M (2020) Lignin for pharmaceutical and biomedical applications – Could this become a reality? Sustain Chem Pharm 18:100320. doi: 10.1016/j.scp.2020.100320

Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. doi: 10.1016/j.pmatsci.2017.12.001

Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16. doi: 10.1002/elsc.201400196

Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839. doi: 10.2135/cropsci2004.0238

Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño MÁ, Cuello J, Guéra A, Esteban-Carrasco A, Zapata JM (2013) Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta 237:1599–1612. doi: 10.1007/s00425-013-1865-5

Hussain S, Iqbal N, Pang T, Khan MN, Liu W, Yang W (2019) Weak stem under shade reveals the lignin reduction behavior. J Integr Agric 18:496–505. doi: 10.1016/S2095-3119(18)62111-2

Itoh T (1990) Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung 44:191–200. doi: 10.1515/hfsg.1990.44.3.191

Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE (2011) Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiol 155:157–168. doi: 10.1104/pp.110.165654

Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HCA, Lee S, Smith BG, Lu F, Sedbrook JC, Sibout R, Grabber JH, Runge TM, Mysore KS, Harris PJ, Bartley LE, Ralph J (2016) Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci Adv 2:e1600393. doi: 10.1126/sciadv.1600393

Kasirajan L, Valiyaparambth R, Kubandiran A, Velu J (2020) Isolation, cloning and expression analysis of cinnamyl alcohol dehydrogenase (CAD) involved in phenylpropanoid pathway of Erianthus arundinaceus, a wild relative of sugarcane. 3 Biotech 10:11. doi: 10.1007/s13205-019-1998-8

Key RE, Bozell JJ (2016) Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustain Chem Eng 4:5123–5135. doi: 10.1021/acssuschemeng.6b01319

Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T (2017) MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol 34:7–15. doi: 10.5511/plantbiotechnology.16.1201a

Kuai J, Sun Y, Zhou M, Zhang P, Zuo Q, Wu J, Zhou G (2016) The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crop Res 199:89–98. doi: 10.1016/j.fcr.2016.09.025

Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol 174:972–985. doi: 10.1104/pp.16.01973

Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C (2021) Tricin biosynthesis and bioengineering. Front Plant Sci 12:733198. doi: 10.3389/fpls.2021.733198

Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295. doi: 10.1104/pp.114.253757

Lebedev VG, Shestibratov KA (2021) Genetic engineering of lignin biosynthesis in trees: Compromise between wood properties and plant viability. Russ J Plant Physiol 68:596–612. doi: 10.1134/S1021443721030109

Lempang M (2016) Pemanfaatan lignin sebagai bahan perekat kayu. Bul Eboni 13:139–150. doi: 10.20886/buleboni.5087

Li M, Pu Y, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45. doi: 10.3389/fchem.2016.00045

Li W, Tian Z, Yu D (2015) WRKY13 acts in stem development in Arabidopsis thaliana. Plant Sci 236:205–213. doi: 10.1016/j.plantsci.2015.04.004

Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. doi: 10.3389/fpls.2017.01867

Marita JM, Hatfield RD, Rancour DM, Frost KE (2014) Identification and suppression of the p-coumaroyl CoA: Hydroxycinnamyl alcohol transferase in Zea mays L. Plant J 78:850–864. doi: 10.1111/tpj.12510

Menucelli JR, Amorim EP, Freitas MLM, Zanata M, Cambuim J, de Moraes MLT, Yamaji FM, da Silva Júnior FG, Longui EL (2019) Potential of Hevea brasiliensis Clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on higher heating value. BioEnergy Res 12:992–999. doi: 10.1007/s12155-019-10041-6

Miyamoto T, Yamamura M, Tobimatsu Y, Suzuki S, Kojima M, Takabe K, Terajima Y, Mihashi A, Kobayashi Y, Umezawa T (2018) A comparative study of the biomass properties of Erianthus and sugarcane: lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Biosci Biotechnol Biochem 82:1143–1152. doi: 10.1080/09168451.2018.1447358

Mofijur M, Mahlia TMI, Logeswaran J, Anwar M, Silitonga AS, Rahman SMA, Shamsuddin AH (2019) Potential of rice industry biomass as a renewable energy source. Energies 12:4116. doi: 10.3390/en12214116

Pazhany AS, Henry RJ (2019) Genetic modification of biomass to alter lignin content and structure. Ind Eng Chem Res 58:16190–16203. doi: 10.1021/acs.iecr.9b01163

Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sedbrook JC (2014) P-Coumaroyl-CoA: Monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726. doi: 10.1111/tpj.12420

Ratner B (2009) The correlation coefficient: Its values range between +1/-1, or do they? J Target Meas Anal Mark 17:139–142. doi: 10.1057/jt.2009.5

Reyes L, Abdelouahed L, Mohabeer C, Buvat JC, Taouk B (2021) Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Convers Manag 244:114459. doi: 10.1016/j.enconman.2021.114459

Rivai RR, Miyamoto T, Awano T, Takada R, Tobimatsu Y, Umezawa T, Kobayashi M (2021) Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Sci Rep 11:23309. doi: 10.1038/s41598-021-02570-y

Rivai RR, Miyamoto T, Awano T, Yoshinaga A, Chen S, Sugiyama J, Tobimatsu Y, Umezawa T, Kobayashi M (2022) Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. Plant Sci 321:111325. doi: 10.1016/j.plantsci.2022.111325

Santos RB, Hart PW, Jameel H, Chang H-M (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. BioResour 8:1456–1477. doi: 10.15376/biores.8.1.1456-1477

Sheikh GG, Ganai AM, Reshi PA, Bilal S, Mir S, Masood D (2018) Improved paddy straw as ruminant feed: A review. Agric Rev 39:137-143. doi: 10.18805/ag.r-1667

Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419. doi: 10.1146/annurev.arplant.53.092401.134447

Silvy N, Reza S, Uddin N, Akther M (2018) Comparison between different components of some available hardwood and softwood in Bangladesh. IOSR J Biotechnol Biochem 4:1–5. doi: 10.9790/264X-04010105

Supanchaiyamat N, Jetsrisuparb K, Knijnenburg JTN, Tsang DCW, Hunt AJ (2019) Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour Technol 272:570–581. doi: 10.1016/j.biortech.2018.09.139

Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340. doi: 10.5511/plantbiotechnology.26.337

Takeda Y, Tobimatsu Y, Yamamura M, Takano T, Sakamoto M, Umezawa T (2019) Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition. J Wood Sci 65:6. doi: 10.1186/s10086-019-1784-6

Tobimatsu Y, Schuetz M (2019) Lignin polymerization: How do plants manage the chemistry so well? Curr Opin Biotechnol 56:75–81. doi: 10.1016/j.copbio.2018.10.001

Umezawa T (2018) Lignin modification in planta for valorization. Phytochem Rev 17:1305–1327. doi: 10.1007/s11101-017-9545-x

Umezawa T, Tobimatsu Y, Yamamura M, Miyamoto T, Takeda Y, Koshiba T, Takada R, Lam PY, Suzuki S, Sakamoto M (2020) Lignin metabolic engineering in grasses for primary lignin valorization. Lignin 1:30–41

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi: 10.1104/pp.110.155119

Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16:3065–3083. doi: 10.1016/j.rser.2012.02.054

Wahyuni Y, Miyamoto T, Hartati H, Widjayantie D, Windiastri VE, Sulistyowati Y, Rachmat A, Hartati NS, Ragamustari SK, Tobimatsu Y, Nugroho S, Umezawa T (2019) Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Ind Crops Prod 142:111840. doi: 10.1016/j.indcrop.2019.111840

Wang J, Feng J, Jia W, Fan P, Bao H, Li S, Li Y (2017) Genome-wide identification of sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci 8:714. doi: 10.3389/fpls.2017.00714

Wang P, Dudareva N, Morgan JA, Chapple C (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. Curr Opin Chem Biol 29:32–39. doi: 10.1016/j.cbpa.2015.08.006

Wang S, Zou C, Yang H, Lou C, Cheng S, Peng C, Wang C, Zou H (2021) Effects of cellulose, hemicellulose, and lignin on the combustion behaviours of biomass under various oxygen concentrations. Bioresour Technol 320:124375. doi: 10.1016/j.biortech.2020.124375

Wi SG, Choi IS, Kim KH, Kim HM, Bae H-J (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6:166. doi: 10.1186/1754-6834-6-166

Wistara NJ, Bahri S, Pari G (2020) Biopellet properties of agathis wood fortified with its peeled-off bark. IOP Conf Ser Mater Sci Eng 935:012047. doi: 10.1088/1757-899X/935/1/012047

Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287:8347–8355. doi: 10.1074/jbc.M111.284497

Wu Z, Wang N, Hisano H, Cao Y, Wu F, Liu W, Bao Y, Wang Z, Fu C (2019) Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol J 17:836-845. doi: 10.1111/pbi.13019

Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of B-O-4 substructures in lignin. Plant Biotechnol 29:419-423. doi: 10.5511/plantbiotechnology.12.0627a

Yamamura M, Noda S, Hattori T, Shino A, Kikuchi J, Takabe K, Tagane S, Gau M, Uwatoko N, Mii M, Suzuki S, Shibata D, Umezawa T (2013) Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnol 30:25–35. doi: 10.5511/plantbiotechnology.12.1127a

Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers (Basel) 11:751. doi: 10.3390/polym11050751

Yanuartono Y, Purnamaningsih H, Indarjulianto S, Nururrozi A (2017) Potensi jerami sebagai pakan ternak ruminansia. J Ilmu-Ilmu Peternak 27:40–62. doi: 10.21776/ub.jiip.2017.027.01.05

Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:98–45. doi: 10.1016/j.copbio.2013.09.008