SKRINING DAN IDENTIFIKASI MIKROBA LIGNINOLITIK PADA PENGOMPOSAN ALAMI TANDAN KOSONG KELAPA SAWIT
Main Article Content
Abstract
TKKS (tandan kosong kelapa sawit) berpotensi dimanfaatkan sebagai pupuk organik atau pakan ternak dengan cara pengomposan. Informasi mikroba yang berperan dalam pengomposan alami TKKS hingga saat ini belum banyak diketahui. Penelitian ini bertujuan mendapatkan isolat mikroba pendegradasi lignin dalam pengomposan alami TKKS asal Perkebunan dan Pabrik Pemerasan Kelapa Sawit, PTPN VIII Cikasungka, Bogor, serta mengidentifikasi mikroba tersebut secara molekuler. Skrining mikroba aktif pendegradasi lignin dilakukan terhadap 17 sampel TKKS yang sudah lapuk secara alami. Sebanyak 19 isolat jamur dan 80 isolat bakteri telah dihasilkan. Aktivitas ligninolitik diukur dengan metode pengujian Sundman dan Nase. Isolat jamur yang memiliki aktivitas ligninolitik sebanyak 13 isolat, sedangkan bakteri sebanyak 15 isolat. Isolat-isolat aktif tersebut selanjutnya diidentifikasi secara molekuler berdasarkan pada sekuen ITS di daerah DNA ribosom untuk jamur dan menggunakan gen 16S rRNA untuk bakteri. Hasil menunjukkan bahwa 5 isolat bakteri yang memiliki kemampuan mendegradasi lignin berasal dari genus Bacillus, sedangkan 3 isolat jamur pendegradasi lignin berasal dari genus Rhizopus dan Aspergillus
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential . BMC Biotechnol 11:94. doi: 10.1186/1472-6750-11-94
Cesarino I, Araújo P, Pereira A, Júnior D, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Braz J Bot 35:303-311. doi: 10.1590/S0100-84042012000400003
Chang YC, Choi DB, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strain capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429-436. doi:10.1016/j.biortech.2013.11.032
Choirunnisa, Zul D, Pratiwi NW (2017) Formulasi mikroorganisme lignoselulolitik asal tanah gambut desa rimbo panjang , kampar sebagai bioaktivator bentuk padat. J Riau Biologia 2:90 – 99
Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: A review. Sustainability 9:1163. doi: 10.3390/su9071163
Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: An introduction. John Wiley & Sons, Weinheim
Dhillon GS, Kaur S (2016) Agro-industrial wastes as feedstock for enzyme production: Apply and exploit the emerging and valuable use options of waste biomass. Academic Press, London. doi: 10.1002/9783527632794.ch37
Darnoko, Sutarta AS (2006) Pabrik kompos di pabrik sawit. Tabloid Sinar Tani, Jakarta
Falade AO, Eyisi OAL, Mabinya LV, Nwodo UU, Okoh AI (2017) Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnol Rep 16:12-17. doi: 10.1016/j.btre.2017.10.001
Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616-1626. doi: 10.1002/bit.24833
Jurado M, Martínez AT, Martínez MJ, Saparrat MCN (2011) Application of white-rot fungi in transformation, detoxification, or revalorization of agriculture wastes: Role of laccase in the processes. Compr Biotechnol 6:595-603. doi: 10.1016/B978-0-08-088504-9.00398-6
Khitrin KS, Fuks SL, Khitrin SV, Kazienkov SA, Meteleva DS (2012) Lignin utilization options and methods. Russ J Gen Chem 82:977-984. doi: 10.1134/S1070363212
Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J Biosci Bioeng 106:162-167. doi: 10.1263/jbb.106.162
Liew PWY, Jong BC, Goh CM, Ahmad M (2009) Bacterial diversity associated with empty oil palm fruit bunch compost as revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. J Gen Appl Microbiol 55:233-240. doi: 10.2323/jgam.55.233
López MJ, Guisado G, Vargas-Garcia MC, Suárez-Estrella F, Moreno J (2006) Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment. Enzyme Microb Technol 40:42-45. doi: 10.1016/j.enzmictec.2005.10.035
Prenafeta-Boldú FX, de Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: McGenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: Members, metagenomics and ecophysiology, handbook of hydrocarbon and lipid microbiology, Springer, Cham, pp 1-36. doi: 10.1007/978-3-319-60063-5_8-2
Riley R, Salamov AA, Brown W, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Lindquist EA, Sun H, Labutti KM, Jabbour D, Luo H, Baker SE, Antonio G, Walton JD, Blanchette RA, Martin F, Cullen D, Hibbett DS, Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci 111:9923–9928. doi: 10.1073/pnas.1418116111
Rodríguez-Couto S. (2017) Industrial an environmental applications of white-rot fungi. Mycosphere 8:456–466. doi: 10.5943/mycosphere/8/3/7
Rosli NS, Harun S, Jahim JM, Othamanimia R, (2017) Chemical and physical characterization of oil palm empty fruit bunch. Malays J Anal Sci 21:188–196. doi: http://dx.doi.org/10.17576/mjas-2017-2101-22
Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164-177. doi: 10.1111/j.1751-7915.2008.00078.x
Valencia PE, Meitiniarti VI (2017) Isolasi dan karakterisasi jamur ligninolitik serta perbandingan kemampuannya dalam biodelignifikasi. Scripta Biologica 4:171-175. doi: 10.20884/1.sb.2017.4.3.449
Widiastuti H, Prakoso HT, Suharyanto, Siswanto (2015) Optimasi pengomposan tandan kosong kelapa sawit menggunakan dekomposer bakteri lignoselulolitik skala komersial. Menara Perkebunan 83:60–69. doi: 10.22302/iribb.jur.mp.v83i2.2
Woo HL, Hazen TC, Simmons BA, DeAngelis KM (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37:60-67. doi: 10.1016/j.syapm.2013.10.001
Xu JZ, Zhang JL, Hu KH, Zhang WG (2013) The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms. Microb Biotechnol 6:241-247. doi: 10.1111/j.1751-7915.2012.00365.x
Yang CX, Wang T, Gao LN, Yin HJ, Lü X (2017) Isolation, identification and characterization of ligninâ€degrading bacteria from Qinling, China. J Appl Microbiol 123:1447-1460. doi: 10.1111/jam.13562
Zainudin MHM, Hassan MA, Md Shah UK, Abdullah N, Tokura M, Yasueda H, Shirai Y, Sakai K, Baharuddin AS (2014) Bacterial community structure and biochemical changes associated with composting of lignocellulosic oil palm empty fruit bunch. BioResour 9:316-335. doi: 10.15376/biores.9.1.316-335
Zhang J, Presley GN, Hammel KE, Ryu J, Menke JR, Figueroa M, Hu D (2016) Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci 113:10968–10973. doi: 10.1073/pnas.1608454113