FERMENTASI MENGGUNAKAN RAGI TEMPE SEBAGAI CARA BIOLOGIS PENGAPUNGAN PAKAN IKAN
Main Article Content
Abstract
Rhizopus sp. dikenal sebagai jamur yang digunakan dalam pembuatan tempe kedelai. Fermentasi Rhizopus sp. menyebabkan perubahan kimia dan fisika pada substrat, termasuk daya apung dan stabilitas dalam air. Sifat ini bisa dimanfaatkan untuk membuat pakan ikan apung secara biologis. Dalam penelitian ini, ragi tempe digunakan sebagai agen hayati dalam fermentasi pakan ikan tenggelam komersial dimana periode fermentasi divariasi selama 0, 22, 24, 26, 28, 30, 32, dan 34 jam. Pakan fermentasi yang dihasilkan dikeringkan dengan oven, selanjutnya kualitas fisiknya diukur dan dibandingkan dengan pakan ikan apung komersial (kontrol positif). Hasil penelitian menunjukkan bahwa pakan fermentasi memiliki stabilitas dalam air, daya serap air, dan daya apung yang lebih baik dibandingkan dengan pakan tenggelam komersial. Namun nilai ini masih lebih rendah dibandingkan pakan apung komersial. Oleh karenanya, proses fermentasi menggunakan ragi tempe memiliki potensi untuk diperbaiki lebih lanjut sebagai metode biologis pembuatan pakan ikan apung.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abro R, Moazzami AA, Lindberg JE, Lundh T (2014a) Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int Aquat Res 6:63
Abro R, Sundell K, Sandblom E, Sundh H, Brännäs E, Kiessling A, Lindberg JE, Lundh T (2014b) Evaluation of chitinolytic activities and membrane integrity in gut tissues of Arctic charr (Salvelinus alpinus) fed fish meal and zygomycete biomass. Comp Biochem Physiol Part B Biochem Mol Biol 175:1–8. doi:10.1016/j.cbpb.2014.06.003
Ariffin R, Apostolopoulos C, Graffham A, MacDougall D, Owens JD (1994) Assessment of hyphal binding in tempe. Lett Appl Microbiol 18:32-34
Christen P, Bramorski A, Revah S, Soccol CR (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71:211–215. doi:10.1016/S0960-8524(99)00084-X
Chukeatirote E, Eungwanichayapant PD, Kanghae A (2017) Determination of volatile components in fermented soybean prepared by a co-culture of Bacillus subtilis and Rhizopus oligosporus. Food Res 1:225–233
Eklund-Jonsson C, Sandberg AS, Alminger ML (2006) Reduction of phytate content while preserving minerals during whole grain cereal tempe fermentation. J Cereal Scie 44:154-160
Erizal E, Lana M, Setyo R, Abbas B (2016) Sintesis dan karakterisasi hidrogel superabsorben berbasis asam akrilat hasil iradiasi gamma. J Ilm Apl Isot dan Radiasi 11:27–38
FAO (2017) Table 9. Type of formulated feed used for tilapia culture with advantage and disadvantage and the type of processing. In: Aquac. Feed Fertil. Resour. Inf. Syst. http://www.fao.org /fileadmin/user_upload/affris/img/Niletilapia_table/Nile_tilapia_table_9_01.pdf. Accessed 1 Jan 2017
FazeliNejad S, Ferreira JA, Brandberg T, Lennartsson PR, Taherzadeh MJ (2016) Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF). Biofuel Res J 3:372–378. doi: 10.18331/BRJ2016.3.1.7
Feng XM, Passoth V, Eklund-Jonsson C, Alminger ML, Schnürer J (2007) Rhizopus oligosporus and yeast co-cultivation during barley tempeh fermentation—nutritional impact and real-time PCR quantification of fungal growth dynamics. Food Microbiol 24:393-402
Ferreira JA, Lennartsson PR, Edebo L, Taherzadeh MJ (2013) Zygomycetes-based biorefinery: Present status and future prospects. Bioresour Technol 135: 523–532. doi: 10.1016/j.biortech.2012. 09.064
Handoyo T, Morita N (2006) Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus. Int J Food Prop 9:347–355
Kurniati T, Nurlaila L, Iim (2017) Effect of inoculum dosage Aspergillus niger and Rhizopus oryzae mixture with fermentation time of oil seed cake (Jatropha curcas L) to the content of protein and crude fiber. J Phys Conf Ser 824:12064
Langeland M, Vidakovic A, Vielma J, Lindberg JE, Kiessling A, Lundh T (2016) Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquac Nutr 22:485–495. doi: 10.1111/anu.12268
Manurukchinakorn S, Fujio Y (1997) Effect of enzymes on the degree of maceration of soybean fermented by Rhizopus strains. J Fac Agric Kyushu Univ 41:231-237
Misra CK, Sahu NP, Jain KK (2002) Effect of extrusion processing and steam pelleting diets on pellet durability, water absorption and physical response of Macrobrachium rosenbergii. ASIAN Australas J Anim Sci 15:1354–1358
Niveditha VR, Sridhar KR (2014) Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India. J Food Sci Technol 51:3253–3260. doi:10.1007/s13197-012-0830-9
Nurlaila (2016) Hasil uji pakan ikan PT. Balqis Sejahtera. Laboratorium Penguji, Balai Bioteknologi, BPPT. Sertifikat hasil uji no. 142-SHU-07-2016, 13 Juli 2016
Olanipekun BF, Otunola ET, Adelakun OE, Oyelade OJ (2009) Effect of fermentation with Rhizopus oligosporus on some physico-chemical properties of starch extracts from soybean flour. Food Chem Toxicol 47:1401-1405
Paolucci M, Fabbrocini A, Volpe MG, Varricchio E, Coccia E (2012) Development of biopolymers as binders for feed for farmed aquatic organisms. In: Muchlisin Z (ed) Aquaculture, InTech, Rijeka, Croatia, pp 3-34. http://cdn.intechweb.org/pdfs/ 27101.pdf. Accessed 10 October 2017.
Paredes-López O, González-Castañeda J, Cárabez-Trejo A (1991) Influence of solid substrate fermentation on the chemical composition of chickpea. J Ferment Bioeng 71:58–62. doi: 10.1016/0922-338X(91)90304-Y
Pradana Y, Sriherwanto C, Yunita E, Suja’i I (2017) Growth of nile tilapia (Oreochormis niloticus) fry fed with coconut testa-cassava bagasse mixed substrate fermented by Rhizopus oryzae. J Bioteknol Biosains Indones 4:1–11
Priatni S, Devi AF, Kardono LBS, Jayasena V (2013) Evaluasi sensorik dan kualitas tempe dari kacang lupin berbagai ukuran partikel. J Teknol dan Ind Pangan 24:209
Sandhu KS, Punia S (2017) Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. J Food Meas Charact 1–7. doi:10.1007/s11694-017-9513-6
Satari B, Karimi K, Taherzadeh MJ, Zamani A (2016) Co-Production of fungal biomass derived constituents and ethanol from citrus wastes free sugars without auxiliary nutrients in airlift bioreactor. Int J Mol Sci 17:302
Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Fish in aquaponics. In: Small-scale aquaponic food production: integrated fish and plant farming, FAO Fisheries and Aquaculture Technical Paper No. 589. Food and Agriculture Organization of the United Nations, Rome, pp 103–121
Sorensen M (2015) Nutritional and Physical Quality of Aqua Feeds. In: 4. International Conference “Fishery” Faculty of Agriculture, Belgrade-Zemun, Serbia, May, 27-29. 2009. Belgrade-Zemun, pp 105–110
Souza Filho PF, Zamani A, Taherzadeh MJ (2017) Production of edible fungi from potato protein liquor (PPL) in Airlift Bioreactor. Fermentation 3:1–12. doi:10.3390/fermentation3010012
StarzyÅ„ska-Janiszewska A, Stodolak B, Wikiera A (2015) Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds. Acta Sci Pol Technol Aliment 14:125–132
Umam RD, Sriherwanto C, Yunita E, Suja’i I (2015) growth of carp (Cyprinus carpio L.) fed with rice bran-coconut bagasse mixed substrate fermented using Rhizopus oryzae. J Bioteknol Biosains Indones 2:81–87
Valdez-González F, Gutiérrez-Dorado R, Hernández-Llamas A, García-Ulloa M, Sánchez-Magaña L, Cuevas-Rodríguez B, Rodríguez-González H
(2017) Bioprocessing of common beans in diets for tilapia. In vivo digestibility and antinutritional factors. J Sci Food Agric 97:4087–4093. doi: 10.1002/jsfa.8275
Varzakas T (1998) Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741-747
Vidakovic A, Langeland M, Sundh H, Sundell K, Olstorpe M, Vielma J, Kiessling A, Lundh T (2016) Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus) fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis). Aquac Nutr 22:1348–1360. doi: 10.1111/anu.12344
Wronkowska M, Christa K, Ciska E, Soral-Åšmietana M (2015) Chemical characteristics and sensory evaluation of raw and roasted buckwheat groats fermented by Rhizopus oligosporus. J Food Qual 38:130–138. doi: 10.1111/jfq.12127