Mass Optimization of Rocket Nozzles Using Ablative Materials
A Case Study on Indonesian Sounding Rockets
DOI:
https://doi.org/10.55981/ijoa.2025.11394Keywords:
nozzle, solid rocket, mass optimization, alternative materials, simulation, fabrication technologyAbstract
This study presents a comprehensive redesign of the RX450 sounding rocket nozzle
aimed at reducing mass while maintaining thermal and structural integrity. The baseline
design, characterized by heavy steel casing and monolithic graphite liners, imposes significant
limitations on payload capacity and flight performance due to its weight and thermal
management challenges. The proposed design replaces the divergent section’s steel casing
with a combination of ablative silica-phenolic composite liners and aluminum 6061 structural
support, achieving a substantial mass reduction from approximately 59 kg to 14.5 kg
in this critical region. Thermal simulations demonstrate that the addition of a glass-phenolic
insulation layer effectively limits heat transfer to the metallic casing, allowing for thinner
structural components without compromising safety. Structural analyses confirm that
both steel and aluminum sections maintain high safety factors under operational loads.
Comparative evaluations of alternative configurations further highlight the benefits of advanced
composite materials and innovative structural concepts, with the lightest model
reducing total nozzle mass by around 40% compared to the baseline. While these results
are based on literature-derived properties and simplified assumptions, they underscore the
potential of integrating ablative composites and lightweight metals to enhance rocket nozzle
performance. Future work will focus on detailed thermochemical modeling, experimental
validation, and full-scale testing to confirm thermal-structural behavior and erosion
rates. Overall, this study supports Indonesia’s strategic objective of advancing indigenous
rocket technology through accessible, high-performance materials and design innovations.
References
Abrizal, Haryadi, Ahmad Riyadl, Bayu Prianto, Idris Eko Putro, Bagus Hayatul Jihad, Starida
Moranova, Firza Fadlan Ekadj, and Henny Setyaningsih. 2024. “Coupled Thermo-Structural
Analysis of Uncooled Rocket Nozzle Metal Case.” International Review of Aerospace
Engineering 17(5):168–74. doi:10.15866/irease.v17i5.25390.
Arabab, Saifeldein. 2015. “Research in Carbon-Carbon Composites.” Open SUIC (Spring):i–21.
Bianchi, Daniele, Francesco Nasuti, Marcello Onofri, and Emanuele Martelli. 2011. “Thermochemical
Erosion Analysis for Graphite/Carbon-Carbon Rocket Nozzles.” Journal of
Propulsion and Power 27(1):197–205. doi:10.2514/1.47754.
Bille, Matt. 2010. ESA Sounding Rockets. Vols. 1–2. doi:10.1038/186269a0.
Burth, Robert H., Philip G. Cathell, David B. Edwards, Ahmed H. Ghalib, John C. Gsell, Heath
C. Hales, Herbert C. Haugh, and Brian R. Tibbetts. 2023. “NASA Sounding Rockets User
Handbook.”
Chen, Xiong, Rui Liu, and Hong Ying Du. 2015. “Erosion Study of Silica Phenolic Nozzles with
Graphite Inserts in Solid Rocket Motors.” Advanced Materials Research 1095:573–78.
doi:10.4028/www.scientific.net/AMR.1095.573.
Davis, Joseph R. 1998. Metals Handbook. 2nd ed. edited by J.R. Davis. Ohio: ASM International.
Handbook Committee.
Dito Saputra, M., and Novi Andria. 2021. Design Optimization of A Conventional Rocket Nozzle
Using Coupled Thermo-Structural Analysis. Vol. 19.
Felix, Bernard R., and Neil M. McBride. 1971. “Development of the Algol III Solid Rocket Motor
for Scout.” SAE Technical Papers 2565–75. doi:10.4271/710765.
Grippi, Richard. 1967. Design, Fabrication, and Testing of the Applications Technology Satellite
Apogee Motor Nozzle. California.
Inatani, Yoshifumi. 2018. “SS-520 Nano Satellite Launcher and Its Flight Result.” Pp. 1–6 in
32nd Annual AIAA/USU Conference on Small Satellites.
Marar, T. M. K., and K. S. Shyla. 1982. “Indian Sounding Rockets for Material Science Experiments.”
Bulletin of Materials Science 4(3):341–46. doi:10.1007/BF02919598.
Mehdikhani, Mahoor, Larissa Gorbatikh, Ignaas Verpoest, and Stepan V. Lomov. 2019. “Voids
in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics,
and Effects on Mechanical Performance.” Journal of Composite Materials 53(12):1579–
1669. doi:10.1177/0021998318772152.
Prescott, B. H., and Micahel Macocha. 1996. “Nozzle Design.” Pp. 137–87 in Tactical missile
propulsion, edited by P. Zarchan.
Sanoj, P., and Balasubramanian Kandasubramanian. 2014. “Hybrid Carbon-Carbon Ablative
Composites for Thermal Protection in Aerospace.” Journal of Composites 2014:1–15.
doi:10.1155/2014/825607.
Schaefer, John W., and Thomas J. Dahm. 1966. STUDIES OF NOZZLE ABLATIVE MATERIAL
PERFORMANCE FOR LARGE SOLID BOOSTERS. Ohio.
Seif, Mina, Joseph Main, Jonathan Weigand, Fahim Sadek, Lisa Choe, Chao Zhang, John
Gross, William Luecke, and David McColskey. 2016. Temperature-Dependent Material
Modeling for Structural Steels: Formulation and Application. Gaithersburg, MD.
doi:10.6028/NIST.TN.1907.
Setiadi. 2013. “Kerjasama Teknis Bidang Teknologi Peroketan Dengan Negara Ukraina.” Media
Dirgantara, 39–44.
Indonesian Journal of Aerospace Vol. 23 No. 1 Juni 2025 :pp 65 – 76 (Abrizal et al.)
76
Shi, Shengbo, Chunlin Gong, Jun Liang, Guodong Fang, Lihua Wen, and Liangxian Gu.
2016. “Ablation Mechanism and Properties of Silica Fiber-Reinforced Composite
upon Oxyacetylene Torch Exposure.” Journal of Composite Materials 50(27):3853–62.
doi:10.1177/0021998315626504.
Silva, Homero Paula, Luiz Cláudio Pardini, and Edison Bittencourt. 2016. “Shear Properties of
Carbon Fiber/Phenolic Resin Composites Heat Treated at High Temperatures.” Journal
of Aerospace Technology and Management 8(3):363–72. doi:10.5028/jatm.v8i3.643.
Sutrisno. 2006. “Rancang Bangun Roket Lapan Dan Kinerjanya.” Berita Dirgantara, 1–6.
Sutton, Georger P., and Oscar Biblarz. 2001. Rocket Propulsion Elements. 7th ed. New York:
John Wiley & Sons.
Williams, S. D., and Donald M. Curry. 1992. Thermal Protection Materials : Thermophysical
Property Data.
Yuda, Ansor Prima. 2016. “Material Selection and Design of Rocket Nozzle Its-350 By Utilizing
Aerothermodynamics Load Analysis.” Institut Teknologi Sepuluh Nopember.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Haryadi Abrizal, Ariadne Laksmidevi Juwono, Bagus Hayatul Jihad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


