Mass Optimization of Rocket Nozzles Using Ablative Materials

A Case Study on Indonesian Sounding Rockets

Authors

  • Haryadi Abrizal Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia ; Aviation and Space Research Organizations, National Research and Innovation Agency, Indonesia
  • Ariadne Laksmidevi Juwono Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
  • Bagus Hayatul Jihad Aviation and Space Research Organizations, National Research and Innovation Agency, Indonesia

DOI:

https://doi.org/10.55981/ijoa.2025.11394

Keywords:

nozzle, solid rocket, mass optimization, alternative materials, simulation, fabrication technology

Abstract

This study presents a comprehensive redesign of the RX450 sounding rocket nozzle
aimed at reducing mass while maintaining thermal and structural integrity. The baseline
design, characterized by heavy steel casing and monolithic graphite liners, imposes significant
limitations on payload capacity and flight performance due to its weight and thermal
management challenges. The proposed design replaces the divergent section’s steel casing
with a combination of ablative silica-phenolic composite liners and aluminum 6061 structural
support, achieving a substantial mass reduction from approximately 59 kg to 14.5 kg
in this critical region. Thermal simulations demonstrate that the addition of a glass-phenolic
insulation layer effectively limits heat transfer to the metallic casing, allowing for thinner
structural components without compromising safety. Structural analyses confirm that
both steel and aluminum sections maintain high safety factors under operational loads.
Comparative evaluations of alternative configurations further highlight the benefits of advanced
composite materials and innovative structural concepts, with the lightest model
reducing total nozzle mass by around 40% compared to the baseline. While these results
are based on literature-derived properties and simplified assumptions, they underscore the
potential of integrating ablative composites and lightweight metals to enhance rocket nozzle
performance. Future work will focus on detailed thermochemical modeling, experimental
validation, and full-scale testing to confirm thermal-structural behavior and erosion
rates. Overall, this study supports Indonesia’s strategic objective of advancing indigenous
rocket technology through accessible, high-performance materials and design innovations.

References

Abrizal, Haryadi, Ahmad Riyadl, Bayu Prianto, Idris Eko Putro, Bagus Hayatul Jihad, Starida

Moranova, Firza Fadlan Ekadj, and Henny Setyaningsih. 2024. “Coupled Thermo-Structural

Analysis of Uncooled Rocket Nozzle Metal Case.” International Review of Aerospace

Engineering 17(5):168–74. doi:10.15866/irease.v17i5.25390.

Arabab, Saifeldein. 2015. “Research in Carbon-Carbon Composites.” Open SUIC (Spring):i–21.

Bianchi, Daniele, Francesco Nasuti, Marcello Onofri, and Emanuele Martelli. 2011. “Thermochemical

Erosion Analysis for Graphite/Carbon-Carbon Rocket Nozzles.” Journal of

Propulsion and Power 27(1):197–205. doi:10.2514/1.47754.

Bille, Matt. 2010. ESA Sounding Rockets. Vols. 1–2. doi:10.1038/186269a0.

Burth, Robert H., Philip G. Cathell, David B. Edwards, Ahmed H. Ghalib, John C. Gsell, Heath

C. Hales, Herbert C. Haugh, and Brian R. Tibbetts. 2023. “NASA Sounding Rockets User

Handbook.”

Chen, Xiong, Rui Liu, and Hong Ying Du. 2015. “Erosion Study of Silica Phenolic Nozzles with

Graphite Inserts in Solid Rocket Motors.” Advanced Materials Research 1095:573–78.

doi:10.4028/www.scientific.net/AMR.1095.573.

Davis, Joseph R. 1998. Metals Handbook. 2nd ed. edited by J.R. Davis. Ohio: ASM International.

Handbook Committee.

Dito Saputra, M., and Novi Andria. 2021. Design Optimization of A Conventional Rocket Nozzle

Using Coupled Thermo-Structural Analysis. Vol. 19.

Felix, Bernard R., and Neil M. McBride. 1971. “Development of the Algol III Solid Rocket Motor

for Scout.” SAE Technical Papers 2565–75. doi:10.4271/710765.

Grippi, Richard. 1967. Design, Fabrication, and Testing of the Applications Technology Satellite

Apogee Motor Nozzle. California.

Inatani, Yoshifumi. 2018. “SS-520 Nano Satellite Launcher and Its Flight Result.” Pp. 1–6 in

32nd Annual AIAA/USU Conference on Small Satellites.

Marar, T. M. K., and K. S. Shyla. 1982. “Indian Sounding Rockets for Material Science Experiments.”

Bulletin of Materials Science 4(3):341–46. doi:10.1007/BF02919598.

Mehdikhani, Mahoor, Larissa Gorbatikh, Ignaas Verpoest, and Stepan V. Lomov. 2019. “Voids

in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics,

and Effects on Mechanical Performance.” Journal of Composite Materials 53(12):1579–

1669. doi:10.1177/0021998318772152.

Prescott, B. H., and Micahel Macocha. 1996. “Nozzle Design.” Pp. 137–87 in Tactical missile

propulsion, edited by P. Zarchan.

Sanoj, P., and Balasubramanian Kandasubramanian. 2014. “Hybrid Carbon-Carbon Ablative

Composites for Thermal Protection in Aerospace.” Journal of Composites 2014:1–15.

doi:10.1155/2014/825607.

Schaefer, John W., and Thomas J. Dahm. 1966. STUDIES OF NOZZLE ABLATIVE MATERIAL

PERFORMANCE FOR LARGE SOLID BOOSTERS. Ohio.

Seif, Mina, Joseph Main, Jonathan Weigand, Fahim Sadek, Lisa Choe, Chao Zhang, John

Gross, William Luecke, and David McColskey. 2016. Temperature-Dependent Material

Modeling for Structural Steels: Formulation and Application. Gaithersburg, MD.

doi:10.6028/NIST.TN.1907.

Setiadi. 2013. “Kerjasama Teknis Bidang Teknologi Peroketan Dengan Negara Ukraina.” Media

Dirgantara, 39–44.

Indonesian Journal of Aerospace Vol. 23 No. 1 Juni 2025 :pp 65 – 76 (Abrizal et al.)

76

Shi, Shengbo, Chunlin Gong, Jun Liang, Guodong Fang, Lihua Wen, and Liangxian Gu.

2016. “Ablation Mechanism and Properties of Silica Fiber-Reinforced Composite

upon Oxyacetylene Torch Exposure.” Journal of Composite Materials 50(27):3853–62.

doi:10.1177/0021998315626504.

Silva, Homero Paula, Luiz Cláudio Pardini, and Edison Bittencourt. 2016. “Shear Properties of

Carbon Fiber/Phenolic Resin Composites Heat Treated at High Temperatures.” Journal

of Aerospace Technology and Management 8(3):363–72. doi:10.5028/jatm.v8i3.643.

Sutrisno. 2006. “Rancang Bangun Roket Lapan Dan Kinerjanya.” Berita Dirgantara, 1–6.

Sutton, Georger P., and Oscar Biblarz. 2001. Rocket Propulsion Elements. 7th ed. New York:

John Wiley & Sons.

Williams, S. D., and Donald M. Curry. 1992. Thermal Protection Materials : Thermophysical

Property Data.

Yuda, Ansor Prima. 2016. “Material Selection and Design of Rocket Nozzle Its-350 By Utilizing

Aerothermodynamics Load Analysis.” Institut Teknologi Sepuluh Nopember.

Downloads

Published

05-10-2025

How to Cite

Abrizal, H., Juwono, A. L., & Jihad, B. H. (2025). Mass Optimization of Rocket Nozzles Using Ablative Materials: A Case Study on Indonesian Sounding Rockets. Indonesian Journal of Aerospace, 23(1), 65–76. https://doi.org/10.55981/ijoa.2025.11394

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.