ANALISIS PENENTUAN POWER LOADING PADA DESAIN AWAL PESAWAT TERBANG TANPA AWAK LSU-05 NG

Authors

  • Novita Atmasari Pusat Teknologi Penerbangan – LAPAN
  • Eries Bagita Jayanti Pusat Teknologi Penerbangan – LAPAN
  • Nur Mufidatul Ula Pusat Teknologi Penerbangan – LAPAN
  • M. Luthfi Ramadiansyah Pusat Teknologi Penerbangan – LAPAN
  • Redha Akbar Ramadhan Pusat Teknologi Penerbangan – LAPAN
  • Prasetyo Ardi Probo Suseno Pusat Teknologi Penerbangan – LAPAN
  • Ardian Rizaldi Pusat Teknologi Penerbangan – LAPAN
  • Kurnia Hidayat Pusat Teknologi Penerbangan – LAPAN
  • Angga Septiyana Pusat Teknologi Penerbangan – LAPAN

DOI:

https://doi.org/10.30536/j.jtd.2019.v17.a3162

Keywords:

power loading, estimasi, matching chart, optimal

Abstract

Penelitian ini berfokus pada analisa penentuan power loading pada awal desain pesawat LSU-05 NG. Dengan menentukan power loading maka kebutuhan daya engine untuk pesawat LSU-05 NG dapat diestimasi. Artinya pemilihan engine dapat dilakukan sehingga menghasilkan gaya dorong agar pesawat dapat melakukan misi pemantauan dan foto udara dengan baik.  Metode yang digunakan untuk analisa penentuan power loading adalah teknik Matching Chart atau Matching Plot dengan memilih titik optimal dari lima konstrain yaitu jarak take-offclimb rate, stall speedcruise speed, dan landing. Hasil penelitian menunjukkan bahwa dengan massa 85 kg dan luas sayap 3,22 mpesawat LSU-05 NG membutuhkan daya 9.7 hp. Penjelasan lebih detail akan dijabarkan pada bagian selanjutnya.  

References

Banal, L. F., & Ubando, A. T. (2016). Fuzzy programming approach to UAV preliminary sizing. In 8th

International Conference on Humanoid, Nanotechnology, Information Technology, Communication and

Control, Environment and Management, HNICEM 2015. https://doi.org/10.1109/HNICEM.2015.7393239

Chipade, V. S., Abhishek, Kothari, M., & Chaudhari, R. R. (2018). Systematic design methodology for

development and flight testing of a variable pitch quadrotor biplane VTOL UAV for payload delivery.

Mechatronics. https://doi.org/10.1016/j.mechatronics.2018.08.008

Cinar, G., Emeneth, M., & Mavris, D. N. (2016). A Methodology for Sizing and Analysis of Electric

Propulsion Subsystems for Unmanned Aerial Vehicles. In 54th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2016-0216

Coleman, Evan, Dan Deaver, Brandon Nowak, and Michael Rubino. 2014. Sizing of a Single-Engine

Propeller-Driven Aircraft. New York.

Dinç, A. (2015). Sizing of a turboprop unmanned air vehicle and its propulsion system. Isi Bilimi Ve

Teknigi Dergisi/ Journal of Thermal Science and Technology.

Essari, A. (2015). Estimation Of Component Design Weights In Conceptual Design Phase For Tactical

UAVs. University of Belgrade.

Federal Aviation Administration. (2011). AC 23-8C - Flight Test Guide for Certification of Part 23

Airports.

Ferreira, J. L. (2018). Conceptual Design of a Manned Reconnaissance Airplane for Martian Atmospheric

Flight. San Jose State University.

Glīzde, N. (2018). Wing and Engine Sizing by Using the Matching Plot Technique. Transport and

Aerospace Engineering. https://doi.org/10.1515/tae-2017-0018

Gunaseelan, V. K. (2011). Rapid Design and Virtual Testing of UAV the DEE Framework. Delft University

of Technology.

Harasani, W. (2010). Design, Build and Test an Unmanned Air Vehicleتصميم وبناء

وبرمجة طائرة بدون طيار. Journal of King Abdulaziz University-

Engineering Sciences. https://doi.org/10.4197/eng.21-2.6

Kamal, A. M., Serrano, A. R. (2018). Design methodology for hybrid (VTOL + Fixed Wing) unmanned

aerial vehicles. Canada.

Kidane, B. S. (2016). Design of Light GA Aircraft for Agricultural Purpose. University of Turkish.

Monterroso, A. (2018). Preliminary sizing, flight test, and Performance Analysis of Small Tri-Rotor VTOL

and Fixed Wing UAV. San Diego State University.

Raymer, D. P. (1992). Aircraft Design: A Conceptual Approach (Second Edi). Washington D.C: American

Institute of Aeronautics and Astronautics, Inc.

Rizaldi, A. (2019). LSU-05 NG Design Recquirements and Objectives. Bogor,Indonesia.

Roskam, J. (2005). Airplane Design. Vol. 1. Lawrence, Kansas.

Sadraey, M. (2013). A Systems Engineering Approach to Unmanned Aerial Vehicle Design. https://doi.org/10.2514/6.2010-9302

Seeckt, K., Scholz, D., & Tor, B. (2010). Application of the Aircraft Preliminary Sizing Tool Presto To

Kerosene and Liquid Hydrogen Fueled Regional Freighter Aircraft. Dlrk, 137–148.

Turanoguz, E. (2014). Design Of a Medium Range Tactical UAV And Improvement Of its Performance by

Using Winglets. Middle East Technical University.

Tyan, M., Nguyen, N. Van, & Lee, J. (2016). A Hybrid VTOL-Fixed Wing Electric UAV Sizing Methodology

Development, (October).

Tyan, Maxim, Nhu Van Nguyen, Sangho Kim, and Jae Woo Lee. 2017. “Comprehensive Preliminary

Sizing/Resizing Method for a Fixed Wing – VTOL Electric UAV.†Aerospace Science and Technology.

Yadav, S. (2014). Sizing of Aircraft According to Takeoff Distance Requirement. Retrieved June 16, 2019,

from https://surjeetyadav.wordpress.com/category/aircraft-design-2/

Downloads

Published

20-12-2019

How to Cite

Atmasari, N., Jayanti, E. B., Ula, N. M., Ramadiansyah, M. L., Ramadhan , R. A., Suseno, P. A. P., … Septiyana , A. (2019). ANALISIS PENENTUAN POWER LOADING PADA DESAIN AWAL PESAWAT TERBANG TANPA AWAK LSU-05 NG. Indonesian Journal of Aerospace, 17(2 Desember), 109–122. https://doi.org/10.30536/j.jtd.2019.v17.a3162

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.