Sun Sensor dan Magnetometer Sebagai Sensor Penentu Sikap Satelit Inklinasi Rendah LAPAN-A2
DOI:
https://doi.org/10.30536/j.jtd.2018.v0.a2950Keywords:
LAPAN-A2, penentuan sikap, sun sensor, magnetometerAbstract
LAPAN-A2 merupakan satelit low earth orbit (LEO), inklinasi rendah yang salah satu misinya adalah pengamatan citra bumi. Dalam melaksanakan misi pengambilan citra ataupun penurunan data, sikap satelit perlu diketahui operator di ruas bumi. Sebagai sensor utama untuk mengetahui sikap satelit digunakan star sensor. Namun ketika berada di wilayah terang, star sensor dapat dengan mudah terganggu oleh cahaya matahari atau bumi. Tulisan ini memperkenalkan penentuan sikap alternatif menggunakan sun sensor dan magnetometer. Idenya, sun sensor dan magnetometer mengukur vektor matahari dan vektor medan magnet pada sumbu satelit. Lalu, dengan menggunakan model posisi matahari dan propagator orbit SGP4, vektor matahari dan vektor medan magnet pada sumbu inersial bumi dapat dihitung. Dari dua vektor pada dua tata acuan yang berbeda, matriks rotasi yang merupakan representasi sikap satelit terhadap bumi dapat dihitung. Dari pengujian, metode ini berhasil menghitung sikap satelit dengan akurasi 3o.
References
Agrawal, P. C. (2017). AstroSat : From Inception to Realization and Launch. Journal of Astrophysics and
Astronomy, 38(2), 1–8. https://doi.org/10.1007/s12036-017-9449-6
Blanco, J. (2014). A tutorial on se (3) transformation parameterizations and on-manifold optimization.
University of Malaga, Tech. Rep, (3), 1–56. Retrieved from http://www.ual.es/personal/jlblanco/%5Cnhttp://mapir.isa.uma.es/%5Cnhttp://mapir.isa.uma.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., … Thomson, A. (2015). The US/UK
World Magnetic Model for 2015-2020: Technical Report. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5TB14V7
Großekatthöfer, K., & Yoon, Z. (2012). Introduction into quaternions for spacecraft attitude
representation. TU Berlin, 1–16. Retrieved from http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:Introduction+into+quaternions+for+spacecraft+attitude+representation#0
Hardhienata, S., Triharjanto, R. H., & Mukhayadi, M. (2011). LAPAN-A2 : Indonesian Near-Equatorial
Surveilance Satellite. Presented at the 18th Asia-Pacific Regional Space Agency Forum (APRSAF),
Singapore, (November).
Hart, C. (2009). Satellite Attitude Determination Using Magnetometer Data Only. In 47th AIAA
Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition (pp.
1–11). Reston, Virigina: American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2009-220
Hoots, F. R., & Roehrich, R. L. (1980). Spacetrack Report No. 3--Models for Propagation of NORAD
Elements Sets. Spacetrack Report, 3(3), 1–91.
Ivanov, D., Ovchinnikov, M., Ivlev, N., & Karpenko, S. (2015). Analytical study of microsatellite attitude
determination algorithms. Acta Astronautica, 116, 339–348.
https://doi.org/10.1016/j.actaastro.2015.07.001
Kutlu, a., Haciyev, C., & Tekinalp, O. (2007). Attitude Determination and Rotational Motion Parameters
Identification of a LEO Satellite Through Magnetometer and Sun Sensor Data. 2007 3rd International
Conference on Recent Advances in Space Technologies, 7–10.
https://doi.org/10.1109/RAST.2007.4284033
Madina, R., Qadir, A. A., & Utama, S. (2015). Penentuan Orbit Satelit LAPAN-A2. Media Dirgantara,
33–38.
Marques, S., Clements, R., & Lima, P. (2000). Comparison of small satellite attitude determination
methods. American Institute of Aeronautics and Astronautics, (August). https://doi.org/10.2514/6.2000-
3948
Ni, S., & Zhang, C. (2011). Attitude determination of nano satellite based on gyroscope, sun sensor and
magnetometer. Procedia Engineering, 15, 959–963. https://doi.org/10.1016/j.proeng.2011.08.177
Ovchinnikov, M., & Ivanov, D. (2014). Approach to study satellite attitude determination algorithms.
Acta Astronautica, 98(1), 133–137. https://doi.org/10.1016/j.actaastro.2014.01.024
Post, M. A., Li, J., & Lee, R. (2013). A Low-Cost Photodiode Sun Sensor for CubeSat and Planetary
Microrover. International Journal of Aerospace Engineering, 2013, 1–9.
https://doi.org/10.1155/2013/549080
Rahman, A., & Mukhayadi, M. (2009). Penentuan sikap satelit berdasarkan distribusi arus listrik pada
panel surya satelit lapat-tubsat. Jurnal Teknologi Dirgantara, 7, 11–18.
Saifudin, M. A., & Mukhayadi, M. (2015). Sistem Attitude Determination and Control (ADCS) Satelit
LAPAN-A2/Orari. Media Dirgantara, 39–46.
Saifudin, M. A., & Triharjanto, R. H. (2010). Algoritma Pengenalan Pola Bintang untuk Deteksi Posisi
Bintang pada Star Sensor Satelit LAPAN. Jurnal Teknologi Dirgantara, 8(1), 36–42.
Seidelmann, P. K. (Ed.). (1992). Explanatory Supplement to the Astronomical Almanac. California:
University Science Books.
Springmann, J. C., Sloboda, A. J., Klesh, A. T., Bennett, M. W., & Cutler, J. W. (2012). The attitude
determination system of the RAX satellite. Acta Astronautica, 75, 120–135. https://doi.org/10.1016/j.actaastro.2012.02.001
Theil, S., Appel, P., & Schleicher, A. (2003). Low Cost , Good Accuracy - Attitude Determination Using
Magnetometer and Simple Sun Sensor. Annual AIAA/USU Conference on Small Satellites, 17.
Triharjanto, R. H., & Saifudin, M. A. (2013). Tahap Pengembangan Star Sensor Satelit Mikro LAPAN. In
Pengembangan Teknologi Satelit di Indonesia : Sistem,Subsistem, dan Misi Operasi (pp. 117–128).
Bogor: IPB Press.
Walker, A., & Kumar, M. (2017). CubeSat Attitude Determination Using Low-Cost Sensors and Magnetic
Field Time Derivative. 55th AIAA Aerospace Sciences Meeting, (January), 1–24.
https://doi.org/10.2514/6.2017-0166
Zhou, Z., Wu, J., Wang, J., & Fourati, H. (2018). Optimal, Recursive and Sub-Optimal Linear Solutions to
Attitude Determination from Vector Observations for GNSS/Accelerometer/Magnetometer Orientation
Measurement. Remote Sensing, 10(3), 377. https://doi.org/10.3390/rs10030377
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Satriya Utama, Patria Rachman Hakim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


