Cosmic Ray Intensity Analysis Based on the Earth’s Latitude and Hemisphere
DOI:
https://doi.org/10.55981/ijoa.2025.9551Keywords:
cosmic ray intensity, Northern Hemisphere (NH), Southern Hemisphere (SH), Halloween Storm, geomagnetic avticityAbstract
The interaction between cosmic rays and solar activity has been extensively investigated,
particularly in relation to how solar phenomena modulate cosmic ray intensity in
the heliosphere. The strength of cosmic rays absorbed by the Earth’s hemisphere is not
uniform across the Northern Hemisphere (NH) and Southern Hemisphere (SH). This study
will include an investigation of cosmic ray intensity as recorded at various latitudes and
hemispheres of the Earth. We employed nine cosmic ray stations in each NH and SH,
separated into three types of latitudes: low, middle, and high. The method of percentage
change in cosmic ray intensity was used, which was evaluated during the Halloween
Storm phenomenon on October 29-30, 2003. The results showed that cosmic ray intensity
decreased more at high latitudes than at low latitudes in both hemispheres (NH and SH).
Furthermore, the reduction in cosmic ray intensity observed in the NH was approximately
1% greater than that observed in the SH. This can be attributed to the Rc value’s dependence
on latitude, variations in geomagnetic activity under different Interplanetary Magnetic
Field (IMF) circumstances, and interplanetary space parameters such as the tilt of the
Heliospheric Current Sheet (HCS).
References
Adriani, O., Barbarino, C., Bazilevskava, G. A., Belloti, R., Boezio, M., Bogomolov, A., Bongi,
M., Bonvicini, V., Borisov, S., & Bottai, S. (2011). The Discovery of Geomagnetically
Trapped Cosmid-Ray Antiprotons. The Astrophysical Journal Letters. 737. https://doi.
org/10.1088/2041-8205/737/2/L29.
Badruddin, S. M. & Singh, Y. P. (2007). Modulation loops, time lag, and Relationship Between
Cosmic ray Intensity and Tilt of The Heliospheric Current Sheet. Astronomy and Astrophysics.
466. https://doi.org/10.1051/0004-6361:20066549.
Bonomi, G., Checcia, P., D’Ericco, M., Pagano, D., & Saracino, G. (2020). Applications of Cosmic-
Ray Muons. Progress in Particle and Nuclear Physics. 112. https://doi.org/10.1016/j.
ppnp.2020.103768.
Chu, W., Yang, Y., Xu, S., Qin, G., Huang, J., Zeren, Z., & Shen, X. (2022). Study on Long-
Term Variation Characteristics of Geomagnetic Cutoff Rigidities of Energetic Protons
Caused y Long-Term Variation of Geomagnetic Field. Frontiers in Earth Science. 10.
https://doi.org/10.3389/feart.2022.818788.
Cordaro, E. G., Venegas-Aravena, P., & Laroze, D. (2019). Variations of Geomagnetic Cutoff
Rigidity in The Southern Hemisphere Close to 70oW (South-Atlantic Anomaly and Arctic
Zones) in The Period 1975-2010. Advances in Space Research. 63 (7). https://doi.
org/10.1016/j.asr.2018.12.019.
Danilova, O. A., Demina, I. M., Ptitsyna, N. G., & Tyasto, M. I. (2019). Mapping of Geomagnetic
Cut-off Rigidity of Cosmic rays During the Main Phase of The Magnetic Storm of November
20, 2003. Geomagnetism and Aeronomy. 59. 147-154. https://doi.org/10.1134/
S0016793219020051.
Enghoff, M. B., Svensmark, J., Becker, H. N., Jørgensen, J. L., Kotsiaros, S., Herceg, M., Alexander,
J. W., Florence, M. M., Connerney, J. E. P. (2024). Cutoff Rigidities, Galactic
Cosmic Ray Flux, and Heavy Ion Detections at Jupiter. Journal of Geophysical Research:
Planets. 129 (2). https://doi.org/10.1029/2023JE008085.
Forbush, S. E. (1958). Cosmic-Ray Intensity Variations During Two Solar Cycles. Journal of
Geophysical Research. 63. 651-669, 1958. https://doi.org/10.1029/JZ063i004p00651.
Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Padatella, N. M., Förster,
M., & Reistad, J. P. (2017). North-South Asymmetries in Earth’s Magnetic Field. Space
Science Review. 206. 225-257. https://doi.org/10.1007/s11214-016-0273-0.
Mangeard, P. S., Clem, J., Evenson, P., Pyle, R., Mitthumsiri, W., Ruffolo, D., Sàiz, A, &
Nutaro, T. (2024). Distinct Pattern of Solar Modulation of Galactic Cosmic ray Above
a High Geomagnetic Cutoff Rigidity. The Astrophysical Journal. 858 (43). https://doi.
org/10.3847/1538-4357/aabd3c.
Tomsia, M., Cieśla, J., Śmieszek, J., Florek, S., Macionga, A., Michalczyk, K., & Stygar, D.
Long-term Space Missions Effects on the Human OrganismL What We Do Know and
What Requires Further Research. Sec. Environmental, Aviation, and Space Physiology.
12. https://doi.org/10.3389/fphys.2024.1284644.
Gvozdevsky, B. B., Belov, A. V., Guschina, R. T., Eroshenko, E. A., Kobelev, P. G., & Yanke
V. G. (2018). Long-Term Changes in Vertical Geomagnetic Cutoff Rigidities of
Cosmic Rays. Physics of Atomic Nuclei. 81. 1382-1389. https://doi.org/10.1134/
S1063778818090132.
Potgieter, M. S. (2013). Solar Modulation of Cosmic Rays. Living Reviews in Solar Physics. 10.
3. https://doi.org/10.12942/lrsp-2013-3.
Putri, A. N. I., Herdiwijaya, D, & Hidayat, T. (2021). Studi Hubungan Intensitas Sinar Kosmik
Terhadap Variasi Parameter Aktivitas Matahari dan Plasma Ruang Antarplanet. Prosiding
Seminar Fisika 7.0, 301-306.
Putri, A. N. I., Herdiwijaya, D, & Hidayat, T. (2024). On the Correlation of Cosmic-Ray Intensity
with Solar Activity and Interplanetary Parameters. Solar Physics, 299(12). https://
doi.org/10.1007/s11207-023-02249-9.
Rankin, J. S., Bindi, V., Bykov, A. M., Cummings, A. C., Torre, S. D., Florinski, V., Heber, B.,
Potgieter, M. S., Stone, E. C., & Zhang, M. (2022). Galactic Cosmic Rays Throughout the
Heliosphere and in the Very Local Interstellar Medium. Space Science Reviews. 218. 42.
https://doi.org/10.1007/s11214-022-00912-4.
Ross, E & Chaplin, W. J. (2019). The Behaviour of Galactic Cosmic-Ray Intensity During Solar Activity Cycle 24. Solar Physics. 294 (8). https://doi.org/10.1007/s11207-019-1397-7.
Sierra-Porta, D. (2024). A Multifractal Approach to Understanding Forbush Decrease Events:
Correlations with Geomagnetic Storms and Space Weather Phenomena. Chaos, Solitons,
& Fractals. 185. https://doi.org/10.1016/j.chaos.2024.11508.
Shea, M. A., & Smart, D. F. (2000). Cosmic Ray Implication for Human Health. Space Science
Reviews. 93. 187-205. https://doi.org/10.1023/A:1026544528473.
Smart, D. F., & Shea, M. A. (2005). A review of geomagnetic cutoff rigidities for
earth‐orbiting spacecraft. Advances in Space Research, 36, 2012–2020.
https://doi.org/10.1016/j.asr.2004.09.015.
Soni, P. K., Kakad, B., & Kakad, A. (2020). L-shell and Energy Dependence of Magnetic Mirror
Point of Charged Particles Trapped in Earth’s Magnetosphere. Earth, Planets, and
Space. 72. 129. https://doi.org/10.1186/s40623-020-01264-5.
Thomas, S. R., Owens, M. J., & Lockwood, M. (2014). The 22-Year Hale Cycle in Cosmic
Ray Flux – Evidence for Direct Heliospheric Modulation. Solar Physics. 289. 407-421.
https://doi.org/10.1007/s11207-013-0341-5.
Usoskin, I. G., Kananen, H., Mursula, K., Tanskanen, P., & Kovaltsov, G. A. (1998). Correlative
Study of Solar Activity and Cosmic Ray Intensity. Journal of Geophysics Research.
103. 9567-9574. https://doi.org/10.1029/97JA03782.
Zhang, L., Tinsley, B., & Zhou, L. Low Latitude Lightning Activity Responses to Cosmic
Ray Forbush Decreases. Geophysical Research Letters. 47 (4). https://doi.
org/10.1029/2020GL087024.
Zhou, H., Li, C., Zong, Q., Parks, G. K., Pu, Z., Chen, H., Xie, L., & Zhang, X. (2015). Shortterm
Variations of The Inner Radiation Belt in The South Atlantic Anomaly. Journal of
Geophysical Research: Space Physics. 120 (6). 4475-4486. https://doi.org/10.1002/
2015JA021312.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annisa Novia Indra Putri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


