ESTIMATION OF OIL PALM PLANT PRODUCTIVITY USING SENTINEL-2A IMAGERY AT CIKASUNGKA PLANATION PTPN VIII, BOGOR, WEST JAVA
DOI:
https://doi.org/10.30536/j.ijreses.2022.v19.a3775Keywords:
estimated productivity, oil palm plants, vegetation index algorithm, sentinel-2A imageryAbstract
Palm oil is one of the commodities that is growing well in Indonesia with a high commercial value which makes the demand for processed palm oil products increase, it is necessary to have data and technology to estimate the productivity of oil palm plantations more efficiently. Remote sensing technology is one of the technologies that can be used to decision problems spatially and accurately, efficiently, and dynamically. One of them is remote sensing using Sentinel-2A imagery. This study aims to analyze the distribution and the accuracy of the NDVI and ARVI algorithms for the estimation of oil palm productivity at the Cikasungka Plantation PTPN VIII. The estimated productivity of oil palm plantations at Cikasungka Plantation varies in each block with an estimated productivity of oil palm plantations of 35,061 Kg/Ha/Month using the algorithm NDVI and ARVI algorithm is 35,431 Kg/Ha/Month. Oil palm productivity was regressed by vegetation index and plant age to generate a model. Based on modeling with these two algorithms, the accuracy of the ARVI algorithm model has a lower RMSE value than NDVI, so it can be said that it is better in estimation of oil palm plant productivity at the Cikasungka Plantation.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


