BIOMASS ESTIMATION MODEL AND CARBON DIOXIDE SEQUESTRATION FOR MANGROVE FOREST USING SENTINEL-2 IN BENOA BAY, BALI
DOI:
https://doi.org/10.30536/j.ijreses.2022.v19.a3797Keywords:
Mangroves, remote sensing, vegetation indices, biomass, CO2 sequestrationAbstract
Remote sensing technology can be used to find out the potential of mangrove forests information. One of the potentials is to be able to absorb three times more CO2 than other forests. CO2 absorbed during the photosynthesis process, produces organic compounds that are stored in the mangrove forest biomass. Utilization of remote sensing technology is able to detect mangrove forest biomass using the density level of the vegetation index. This study focuses on determining the best AGB model based on the vegetation index and the ability of mangrove forests to absorb CO2. This research was conducted in Benoa Bay, Bali Province, Indonesia. The satellite image used is Sentinel-2. Classification of mangroves and non-mangroves using a multivariate random forest algorithm. Furthermore, the mangrove forest biomass model using a semi-empirical approach, while the estimation of CO2 sequestration using allometric equations. Mean Absolute Error (MAE) is used to evaluate the validation of the model results. The classification results showed that the detected area of Benoa Bay mangrove forest reached 1134 ha (OA: 0.98, kappa: 0.95). The best AGB estimation result is the DVI-based AGB model (MAE: 23,525) with a value range of 0 to 468.38 Mg/ha. DVI-based AGB derivatives are BGB with a value range of 0 to 79.425 Mg/ha, TAB with a value range of 0 to 547.8 Mg/ha, TCS with a value range of 0 to 257.47 Mg/ha, and ACS with a value range of 0 to 944.912 Mg/ha.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


