THE EFFECT OF JPEG2000 COMPRESSION ON REMOTE SENSING DATA OF DIFFERENT SPATIAL RESOLUTIONS
DOI:
https://doi.org/10.30536/j.ijreses.2017.v14.a2724Keywords:
compression, effect, spatial resolution, remote sensing, JPEG2000Abstract
The huge size of remote sensing data implies the information technology infrastructure to store, manage, deliver and process the data itself. To compensate these disadvantages, compressing technique is a possible solution. JPEG2000 compression provide lossless and lossy compression with scalability for lossy compression. As the ratio of lossy compression getshigher, the size of the file reduced but the information loss increased. This paper tries to investigate the JPEG2000 compression effect on remote sensing data of different spatial resolution. Three set of data (Landsat 8, SPOT 6 and Pleiades) processed with five different level of JPEG2000 compression. Each set of data then cropped at a certain area and analyzed using unsupervised classification. To estimate the accuracy, this paper utilized the Mean Square Error (MSE) and the Kappa coefficient agreement. The study shows that compressed scenes using lossless compression have no difference with uncompressed scenes. Furthermore, compressed scenes using lossy compression with the compression ratioless than 1:10 have no significant difference with uncompressed data with Kappa coefficient higher than 0.8.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


