DETERMINATION OF THE BEST METHODOLOGY FOR BATHYMETRY MAPPING USING SPOT 6 IMAGERY: A STUDY OF 12 EMPIRICAL ALGORITHMS
DOI:
https://doi.org/10.30536/j.ijreses.2017.v14.a2827Keywords:
bathymetry, SPOT 6, empirical methodology, multispectral imageAbstract
For the past four decades, many researchers have published a novel empirical methodology for bathymetry extraction using remote sensing data. However, a comparative analysis of each method has not yet been done. Which is important to determine the best method that gives a good accuracy prediction. This study focuses on empirical bathymetry extraction methodology for multispectral data with three visible band, specifically SPOT 6 Image. Twelve algorithms have been chosen intentionally, namely, 1) Ratio transform (RT); 2) Multiple linear regression (MLR); 3) Multiple nonlinear regression (RF); 4) Second-order polynomial of ratio transform (SPR); 5) Principle component (PC); 6) Multiple linear regression using relaxing uniformity assumption on water and atmosphere (KNW); 7) Semiparametric regression using depth-independent variables (SMP); 8) Semiparametric regression using spatial coordinates (STR); 9) Semiparametric regression using depth-independent variables and spatial coordinates (TNP), 10) bagging fitting ensemble (BAG); 11) least squares boosting fitting ensemble (LSB); and 12) support vector regression (SVR). This study assesses the performance of 12 empirical models for bathymetry calculations in two different areas: Gili Mantra Islands, West Nusa Tenggara and Menjangan Island, Bali. The estimated depth from each method was compared with echosounder data; RF, STR, and TNP results demonstrate higher accuracy ranges from 0.02 to 0.63 m more than other nine methods. The TNP algorithm, producing the most accurate results (Gili Mantra Island RMSE = 1.01 m and R2=0.82, Menjangan Island RMSE = 1.09 m and R2=0.45), proved to be the preferred algorithm for bathymetry mapping.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


