MORINGA OLEIFERA LEAF AS A POTENTIAL ANTITHROMBOTIC AGENT: AN IN VITRO EVALUATION

Main Article Content

Bio Putri Ayanti
Nurbidayah Nurbidayah
Nurul Amalia
Syafina Azzahra
Amalia Amini

Abstract

Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide, one of which is triggered by an imbalance between fibrin formation and fibrinolysis processes, leading to fibrin accumulation that can lead to thrombosis. Commercial thrombolytic agents are currently widely used, but their use is known to cause serious side effects often and have limited effectiveness. This gap encourages initial screening of natural materials as an effort to explore the potential of new thrombolytic agents in the future. This study aims to evaluate the potential of Moringa oleifera leaf filtrate at concentrations of 25%, 50%, 75%, and 100% as an antithrombotic agent through qualitative identification of secondary metabolites and testing of thrombolytic activity and anticoagulant ability in vitro. The results showed that Moringa leaf filtrate at a concentration of 25% was able to lyse blood clots by 60%, compared to the positive control nattokinase (82%), with a relative effectiveness of 71.7%. In vitro anticoagulant activity testing showed an extension of blood clotting time from 10 minutes (control) to 35 minutes in the treatment. ANOVA analysis showed a significant difference between concentrations (p < 0.05). These findings support the initial potential of this natural product as a candidate antithrombotic agent and provide a scientific basis for further research.

Article Details

How to Cite
Ayanti, B. P., Nurbidayah, N., Amalia, N., Azzahra, S., & Amini, A. (2025). MORINGA OLEIFERA LEAF AS A POTENTIAL ANTITHROMBOTIC AGENT: AN IN VITRO EVALUATION. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(2), 329–338. https://doi.org/10.55981/jbbi.2025.13503
Section
Articles

References

Akbor, M. S., Al Hasan, M. S., Haque, M. F., Hossain, M. S., Tanim, T. I., Sheikh, S., Faruq, A. Al, & Islam, M. T. (2023). Clot Lysis and Membrane Protection Potentials of Cheilanthes tenuifolia Methanolic Leaf Extract. Khulna University Studies, 122–130. https://doi.org/10.53808/KUS.2023.20.02.1019-ls

Altaf, F., Wu, S., & Kasim, V. (2021). Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Frontiers in Molecular Biosciences, 8(May), 1–17. https://doi.org/10.3389/fmolb.2021.680397

Ayanti, B. P., Ethica, S. N., Sulisytaningtyas, A. R., Dewi, S. S., & Zilda, D. S. (2022). Prospective Purification and Assay of Thrombolytic Protease from Bacillus sp. HSFI-10 Isolated from Sand Sea Cucumber for Antithrombotic Agent Development. 7th International Conference on Biological Science (ICBS 2021) Prospective, 22(18), 404–415.

Barhoi, D., Upadhaya, P., Barbhuiya, S. N., Giri, A., & Giri, S. (2021). Aqueous Extract of Moringa oleifera Exhibit Potential Anticancer Activity and can be Used as a Possible Cancer Therapeutic Agent: A Study Involving In Vitro and In Vivo Approach. Journal of the American College of Nutrition, 40(1), 70–85. https://doi.org/10.1080/07315724.2020.1735572

Broderick, C., Watson, L., & Armon, M. P. (2021). Thrombolytic strategies versus standard anticoagulation for acute deep vein thrombosis of the lower limb. Cochrane Database of Systematic Reviews, 2021(1). https://doi.org/10.1002/14651858.CD002783.pub5

Clements, G., Yamlean, P. V. Y., & Lolo, W. A. (2020). Formulasi dan Uji Aktivitas Antibakteri Krim Ekstrak Etanol Herba Seledri (Apium graveolens L.) Terhadap Staphylococcus aureus. Pharmacon, 9(2), 226–232.

Deng, Y., Liu, X., Katrolia, P., Kopparapu, N. K., & Zheng, X. (2018). A dual-function chymotrypsin-like serine protease with plasminogen activation and fibrinolytic activities from the GRAS fungus, Neurospora sitophila. International Journal of Biological Macromolecules, 109, 1338–1343. https://doi.org/10.1016/j.ijbiomac.2017.11.142

Dubey, R., Kumar, J., Agrawala, D., Char, T., & Pusp, P. (2011). Isolation, production, purification, assay and characterization of fibrinolytic enzymes (Nattokinase, Streptokinase and Urokinase) from bacterial sources. African Journal of Biotechnology, 10(8), 1408–1420. http://www.academicjournals.org/AJB

Ferdiani, D., Zilda, D. S., Afriansyah, M. A., & Ethica, S. N. (2023). Characteristics and Substrate Specificity of Semi-Purified Bacterial Protease of Bacillus thuringiensis HSFI-12 with Potential as Antithrombotic Agent. Science and Technology Indonesia, 8(1), 9–16. https://doi.org/10.26554/sti.2023.8.1.9-16

Ge, Y.-H., Chen, Y.-Y., Zhou, G.-S., Liu, X., Tang, Y.-P., Liu, R., Liu, P., Li, N., Yang, J., Wang, J., Yue, S.-J., Zhou, H., & Duan, J.-A. (2018). A Novel Antithrombotic Protease from Marine Worm Sipunculus Nudus. International Journal of Molecular Sciences, 19(10), 3023. https://doi.org/10.3390/ijms19103023

Hidayati, N., Fuad, H., Munandar, H., Zilda, D. S., Nurrahman, N., Fattah, M., Oedjijono, O., Samiasih, A., & Ethica, S. N. (2021a). Proteolytic and Clot Lysis Activity Screening of Crude Proteases Extracted from Tissues and Bacterial Isolates of Holothuria scabra. IOP Conference Series: Earth and Environmental Science, 755(1), 012016. https://doi.org/10.1088/1755-1315/755/1/012016

Hidayati, N., Fuad, H., Munandar, H., Zilda, D. S., Nurrahman, N., Fattah, M., Oedjijono, O., Samiasih, A., & Ethica, S. N. (2021b). Proteolytic and Clot Lysis Activity Screening of Crude Proteases Extracted from Tissues and Bacterial Isolates of Holothuria Scabra. IOP Conference Series: Earth and Environmental Science, 755(1), 012016. https://doi.org/10.1088/1755-1315/755/1/012016

Iriani, F., Rakhmiati, R., Kertasari, V. D., Handayani, E. P., Zuyasna, Z., & Yanuastri, P. W. (2023). Secondary metabolite compounds of Moringa oleifera leaves in two different urban altitude locations, Indonesia. Caspian Journal of Environmental Sciences, 21(5), 1065–1071. https://doi.org/10.22124/cjes.2023.6414

Kim, K., & Park, K.-I. (2019). A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. Evidence-Based Complementary and Alternative Medicine, 2019, 1–18. https://doi.org/10.1155/2019/7125162

Kumolosasi, E., Cheng, C. W., Abdullah, A. Z., Manap, N., Syahirah, L., Woon, L., Yusuf, M. H., Lo, S. Y., Buang, F., Mohd Said, M., MohamadO, H., & Falina, J. M. (2021). Antihypertensive Activities of Standardised Moringa oleifera Lam (Merunggai) Extracts in Spontaneously Hypertensive Rats. Sains Malaysiana, 50(3), 769–778. https://doi.org/10.17576/jsm-2021-5003-18

Kunwar, B., Jain, V., & Verma, S. K. (2022). In vitro thrombolytic activity of Moringa oleifera. Nusantara Bioscience, 14(1). https://doi.org/10.13057/nusbiosci/n140108

Lichota, A., Szewczyk, E. M., & Gwozdzinski, K. (2020). Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. International Journal of Molecular Sciences, 21(21), 7975. https://doi.org/10.3390/ijms21217975

Mackman, N. (2012). New insights into the mechanisms of venous thrombosis. Journal of Clinical Investigation, 122(7), 2331–2336. https://doi.org/10.1172/JCI60229

Marchelak, A., Kolodziejczyk., Czepas, J., Ponczek, M. B., Liudvytska., Magdalena, O. M. P., Bielska, B., Miłowska, K., & Olszewska, M. A. (2023). Flavonol and A-type procyanidin-rich extracts of Prunus spinosa L. flower exhibit anticoagulant activity through direct thrombin inhibition, but do not affect platelet aggregation in vitro. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1307373

Mieres-Castro, D., & Mora-Poblete, F. (2023). Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics, 15(2), 348. https://doi.org/10.3390/pharmaceutics15020348

Mondong, F. R. (2015). Skrining Fitokimia dan Uji Aktivitas Antioksidan Ekstrak Etanol Daun Patikan Emas (Euprorbia prunifolia Jacq.) dan Bawang Laut (Proiphys amboinensis (L.) Herb). Jurnal MIPA, 4(1), 81. https://doi.org/10.35799/jm.4.1.2015.6910

Nailufar, F., Tjandrawinata, R. R., & Suhartono, M. T. (2016). Thrombus Degradation by Fibrinolytic Enzyme of Stenotrophomonas sp. Originated from Indonesian Soybean-Based Fermented Food on Wistar Rats. Advances in Pharmacological Sciences, 2016. https://doi.org/10.1155/2016/4206908

Nuraini, L., Tri Purwanto, B., Syahrani, A., Primaharinastiti, R., & Toto Poernomo, A. (2021). Pengaruh Proses Fermentasi pada Daun Centella asiatica oleh Acetobacter tropicalis Terhadap Aktivitas Trombolitik. Majalah Farmasetika, 6, 1. https://doi.org/10.24198/mfarmasetika.v6i0.36665

Olas, B., Urbańska, K., & Bryś, M. (2020). Saponins as Modulators of the Blood Coagulation System and Perspectives Regarding Their Use in the Prevention of Venous Thromboembolic Incidents. Molecules, 25(21), 5171. https://doi.org/10.3390/molecules25215171

Palupi, D. A., Prasetyowati, T. W., Murtiningsih, D., & Mahdiyah, D. (2021). Antiasthma Activities of Moringa oleifera Lam. Leaves Extract on the Eosinophil Count and Mast Cells in BALB/c Mice. Borneo Journal of Pharmacy, 4(3), 171–177. https://doi.org/10.33084/bjop.v4i3.1916

Panova, N., Gerasimova, A., Tumbarski, Y., Ivanov, I., Todorova, M., Dincheva, I., Gentscheva, G., Gledacheva, V., Slavchev, V., Stefanova, I., Petkova, N., Nikolova, S., & Nikolova, K. (2025). Metabolic Profile, Antioxidant, Antimicrobial, Contractile, and Anti-Inflammatory Potential of Moringa oleifera Leaves (India). Life, 15(4), 583. https://doi.org/10.3390/life15040583

Permatasari, E. A., Indrayati, A., & Kurniasari, F. (2024). Isolasi dan Uji Aktifitas Fibrinolitik Ekstrak Enzim Fibrinolitik Bakteri yang berasal dari Limbah Cair Rumah Pemotongan Ayam (RPA) di Karanganyar. PREPOTIF : Jurnal Kesehatan Masyarakat, 8(April), 539–554.

Phil, S., Praveen, S., Murali, N., Raghu, N., & Suresh, P. (2022). Evaluation of Invitro Thrombolytic Activity of Moringa oleifera Flower Extract. International Journal of Scientific Research in Science and Technology, 9(10), 230–238.

Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 4(1), 14. https://doi.org/10.1186/1477-9560-4-14

Saputri, F. C., Andriani, A., & Azmi, N. U. (2022). Imperata cylindrica and Moringa oleifera: Antithrombotic Effect on Pulmonary Thromboembolism in Mice. Pharmacognosy Journal, 14(1), 148–153. https://doi.org/10.5530/pj.2022.14.20

Tangkery, R. A. B., Paransa, D. S., & Rumengan, A. (2013). Uji Aktivitas Antikoagulan Ekstrak Mangrove Aegiceras corniculatum. Jurnal Pesisir Dan Laut Tropis, 1(1), 7. https://doi.org/10.35800/jplt.1.1.2013.1278

Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coggeshall, M., Cornaby, L., Dandona, L., Dicker, D. J., Dilegge, T., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Fleming, T., … Murray, C. J. L. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6

Weliyani, Nugroho, R. A., & Syafrizal. (2015). Uji Aktivitas Antikoagulan Ekstrak Propolis Trigona laeviceps terhadap Darah Mencit (Mus musculus L.). Prosiding Seminar Sains Dan Teknologi FMIPA Unmul, September, 1–10.

Weng, Y., Yao, J., Sparks, S., & Wang, K. (2017). Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. International Journal of Molecular Sciences, 18(3), 523. https://doi.org/10.3390/ijms18030523

World Health Organization. (2025). Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

Yu, E., Malik, V. S., & Hu, F. B. (2018). Cardiovascular Disease Prevention by Diet Modification. Journal of the American College of Cardiology, 72(8), 914–926. https://doi.org/10.1016/j.jacc.2018.02.085

Zaman, R., Parvez, M., Jakaria, M., Abu Sayeed, M., & Islam, M. (2015). In vitro Clot Lysis Activity of Different Extracts of Mangifera sylvatica Roxb. Leaves. Research Journal of Medicinal Plant, 9(3), 135–140. https://doi.org/10.3923/rjmp.2015.135.140

Zaragozá, C., Álvarez-Mon, M. Á., Zaragozá, F., & Villaescusa, L. (2022). Flavonoids: Antiplatelet Effect as Inhibitors of COX-1. Molecules, 27(3), 1146. https://doi.org/10.3390/molecules27031146