UTILIZATION OF OIL PALM EMPTY FRUIT BUNCHES ENHANCED WITH MOLASSES FOR XYLITOL PRODUCTION
Main Article Content
Abstract
A minimal oil palm empty fruit bunch (OPEFB) usage encourages increased OPEFB utilization to prevent its loss of economic prospects. The xylose and arabinose constituents of OPEFB’s hemicellulose part can be utilized as raw materials for xylitol production. A high diabetes mellitus and periodontal disease prevalence in Indonesia makes xylitol a safe and helpful low-calorie sweetener alternative. This research explores the OPEFB molasses-supplemented media and compares Moniliella pollinis SP5 and other M. pollinis ethyl methanesulfonate (EMS) mutants in xylitol yields. It was found that M. pollinis SP5 accomplished 27% better performance in OPEFB+15%(v/v) molasses than in OPEFB from 0.48 g/g to 0.61 g/g. In addition, M4, M5, and M6 mutants from EMS mutagenesis generated more xylitol concentration in OPEFB + 15%(v/v) molasses compared to the SP5 strain. These findings provide in-sights into the potential of xylitol manufacture with OPEFB. For future research, it is recommended that xylitol production employing OPEFB be optimized.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abidin JZ (2023) Tata kelola industri kelapa sawit berkelanjutan dalam mendukung ketahanan energi nasion-al. J Agrosociology Sustain 1:59–74 . doi: 10.61511/jassu.v1i1.2023.136
Adiguna GS, Aryantha INP (2020) Aplikasi fungi rizosfer sebagai pupuk hayati pada bibit kelapa sawit dengan memanfaatkan limbah tandan kosong kelapa sawit
sebagai media pertumbuhan. MANFISH J 1:32–42. doi: 10.31573/manfish.v1i01.43
Arifan F, Nuswantari SR (2020) The xylitol production efficiency from corn cob waste by using stirred tank bioreactor-tubular loop liquid emulsion mem-brane (LEM). IOP Conf Ser Earth En-viron Sci 448:012023. doi: 10.1088/1755-1315/448/1/012023
Becker M, Ahn K, Bacher M, Xu C, Sundberg A, Willför S, Rosenau T, Potthast A (2021) Comparative hy-drolysis analysis of cellulose samples and aspects of its application in con-servation science. Cellulose 28:8719–8734. doi: 10.1007/s10570-021-04048-6
Belivaqua GC, Filho FM, Forte MBS (2023) Simultaneous production of xylitol and arabitol by Candida tropicalis fermen-tation improving agro-industrial wastes valorization. Food and Bi-oproducts Processing 140:29-45 . doi: 10.1016/j.fbp.2023.04.006
Benahmed AG, Gasmi A, Arshad M, Sha-naida M, Lysiuk R, Peana M, Pshyk-Titko I, Adamiv S, Shanaida Y, Bjørklund G (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104:7225–7237 . doi: 10.1007/s00253-020-10708-7
Cheng H, Wang S, Bilal M, Ge X, Zhang C, Fickers P, Cheng H (2018) Identifica-tion, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and im-provement of erythritol productivity us-ing metabolic engineering. Microb Cell Fact 17:133 . doi: 10.1186/s12934-018-0982-z
Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and pro-spects of xylitol production with whole cell bio-catalysis: A review. Microbiol Res 197:9–21 . doi: 10.1016/j.micres.2016.12.012
Deshpande MS, Kulkarni PP, Kumbhar PS, Ghosalkar AR (2022) Erythritol pro-duction from sugar based feedstocks by Moniliella pollinis using lysate of recycled cells as nutrients source. Process Biochemistry 112:45–52 . doi: 10.1016/j.procbio.2021.11.020
de Souza Queiroz S, Jofre FM, dos Santos HA, Hernández-Pérez AF, Felipe M das G de A (2023) Xylitol and ethanol co-production from sugarcane ba-gasse and straw hemicellulosic hy-drolysate supplemented with molas-ses. Biomass Convers Biorefinery 13:3143–3152 . doi: 10.1007/s13399-021-01493-y
El Asri O, Farag MA (2023) The potential of molasses from different dietary sources in industrial applications: A source of functional compounds and health attributes, a comprehensive re-view. Food Biosci 56:103263 . doi: 10.1016/j.fbio.2023.103263
Fithri L, Puspaningsih NNT, Asmarani O, Ni’matuzahroh, Fitrah Dewi GD, Ari-zandy RY (2020) Characterization of fungal laccase isolated from oil palm empty fruit bunches (OPEFB) and its degradation from the agriculture waste. Biocatal Agric Biotechnol 27:101676 . doi: 10.1016/j.bcab.2020.101676
Harahap BM (2020) Degradation techniques of hemicellulose fraction from biomass feedstock for optimum xylose produc-tion: A review. J Keteknikan Pertan Trop dan Biosist 8:107–124 . doi: 10.21776/ub.jkptb.2020.008.02.01
Hidayat MS, Hasibuan A, Harahap B, Nasu-tion SP (2022) Pemanfaatan tandan kosong kelapa sawit sebagai bahan pupuk di PT Karya Hevea Indonesia. Fact J Ind Manaj dan Rekayasa Sist Ind 1:52–58 . doi: 10.56211/factory.v1i2.172
Indriati L, Elyani N, Dina SF (2020) Empty fruit bunches, potential fiber source for Indonesian pulp and paper industry. IOP Conf Ser Mater Sci Eng 980:012045 . doi: 10.1088/1757-899X/980/1/012045
Karuppiah V, Sun J, Li T, Vallikkannu M, Chen J (2019) Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front Microbiol 10 . doi: 10.3389/fmicb.2019.01068
Khatape AB, Rangaswamy V, Dastager SG (2023) Strain improvement for en-hanced erythritol production by Mo-niliella pollinis Mutant-58 using jaggery as a cost-effective sub-strate. Int Microbiol 27:581–596 . doi: 10.1007/s10123-023-00411-8
Kim, SH (2019) Xylitol production from byproducts generated during se-quential acid-/alkali-pretreatment of empty palm fruit bunch fiber by an adapted Candida tropicalis. Frontiers in Energy Research 7 . doi: 10.3389/fenrg.2019.00072
Kumar V, Yadav SK, Kumar J, Ahluwalia V (2020) A critical review on current strategies and trends employed for removal of inhibitors and toxic materi-als generated during biomass pre-treatment. Bioresour Technol 299:122633 . doi: 10.1016/j.biortech.2019.122633
Liang P, Cao M, Li J, Wang Q, Dai Z (2023) Expanding sugar alcohol industry: Mi-crobial production of sugar alcohols and associated chemocatalytic deriva-tives. Biotechnology Advances 64:108105 . doi: 10.1016/j.biotechadv.2023.108105
Malekmahmoodi M, Shamsi M, Roozbahani N, Moradzadeh R (2020) A random-ized controlled trial of an educational intervention to promote oral and den-tal health of patients with type 2 dia-betes mellitus. BMC Public Health 20:287 . doi: 10.1186/s12889-020-8395-4
Manjarres-Pinzón K, Arias-Zabala M, Cor-rea-Londono G, Rodriguez-Sandoval E (2017) Xylose recovery from dilute-acid hydrolysis of oil palm (Elaeis guineensis) empty fruit bunches for xylitol production. African J Biotechnol 16:1997–2008 . doi: 10.5897/AJB2017.16214
Manjarres-Pinzón K, Mendoza-Meza D, Ari-as-Zabala M, Correa-Londoño G, Rodriguez-Sandoval E (2022) Effects of agitation rate and dissolved oxygen on xylose reductase activity during xy-litol production at bioreactor scale. Food Sci Technol 42 . doi: 10.1590/fst.04221
Mardawati E, Febrianti EA, Fitriana HN, Yu-liana T, Putriana NA, Suhartini S, Kasbawati (2022) An integrated pro-cess for the xylitol and ethanol pro-duction from oil palm empty fruit bunch (OPEFB) using Debaryomyces hansenii and Saccharomyces cere-visiae. Microorganisms 10:2036 . doi: 10.3390/microorganisms10102036
Mardawati E, Maharani N, Wira DW, Hara-hap BM, Yuliana T, Sukarminah E (2018) Xylitol production from oil palm empty fruit bunches (OPEFB) via simultaneous enzymatic hydrolysis and fermentation process. J Ind Inf
Technol Agric 2. doi: 10.24198/jiita.v2i1.25064
Medina JDC, Woiciechowski AL, Filho AZ, Brar SK, JúniorAIM, Soccol CR (2018) Energetic and economic anal-ysis of ethanol, xylitol and lignin pro-duction using oil palm empty fruit bunches from a brazilian factory. Journal of Cleaner Production 195:44-45 . doi: 10.1016/j.jclepro.2018.05.189
Meilany D, Kresnowati MTAP, Setiadi T, Boopathy R (2020) Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. Applied Sciences 10:1391 . doi: 10.3390/app10041391
Pham Le Khanh H, Nemes D, Rusznyák Á, Ujhelyi Z, Fehér P, Fenyvesi F, Váradi J, Vecsernyés M, Bácskay I (2022) Comparative investigation of cellular effects of polyethylene glycol (PEG) derivatives. Polymers (Basel) 14:279 . doi: 10.3390/polym14020279
Prabhu AA, Bosakornranut E, Amraoui Y, Agrawal D, Coulon F, Vivekanand V, Thakur VK, Kumar V (2020) En-hanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotech-nology for Biofuels 13 . doi: 10.1186/s13068-020-01845-2
Salli K, Lehtinen MJ, Tiihonen K, Ouwehand AC (2019) Xylitol’s health benefits be-yond dental health: A comprehensive review. Nutrients 11:1813 . doi: 10.3390/nu11081813
Singh AK, Deeba F, Kumar M, Kumari S, Wani SA, Paul T, Gaur NA (2023) Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Microbial Cell Factories 22 . doi: 10.1186/s12934-023-02190-3
Stylianopoulou C (2023) Carbohydrates: Chemistry and classification. In: En-cyclopedia of Human Nutrition. Else-vier, pp 114–125
Sutomo S, Purwanto NH (2022) Pengaruh konsumsi tisane daun belimbing wul-uh terhadap perubahan kadar gula dalam darah pada penderita diabetes mellitus tipe 2. J Keperawatan 16:1–15
Uhliariková I, Matulová M, Capek P (2021) Optimizing acid hydrolysis for mono-saccharide compositional analysis of Nostoc cf. linckia acidic exopolysac-charide. Carbohydr Res 508:108400 . doi: 10.1016/j.carres.2021.108400
Unrean P, Ketsub N (2018) Integrated lig-nocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial Crops and Products 123:238–246 . doi: 10.1016/j.indcrop.2018.06.071
Vučurović VM, Puškaš VS, Miljić UD (2018) Bioethanol production from sugar beet molasses and thick juice by free and immobilised Saccharomyces cere-visiae. Journal of the Institute of Brew-ing 125:134-142 . doi: 10.1002/jib.536
Xie Y, Zhou L, Dai J, Chen J, Yang X, Wang X, Wang Z, Feng L (2022) Effects of the C/N ratio on the microbial com-munity and lignocellulose degradation, during branch waste composting. Bi-oprocess Biosyst Eng 45:1163–1174 . doi: 10.1007/s00449-022-02732-w
Zhang L, Chen Z, Wang J, Shen W, Li Q, Chen X (2021) Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb Cell Fact 20:105. doi: 10.1186/s12934-021-01596-1