IDENTIFICATION OF KEY NITROGEN USE EFFICIENCY-RELATED GENES IN OIL PALM USING BIOINFORMATICS APPROACHES

Main Article Content

Galuh Wening Permatasari
Retno Diah Setiowati
Sri Wening

Abstract

Efficient nitrogen use is crucial for maximizing oil palm yield while reducing environmental impact. Poor nitrogen utilization causes excessive growth and nutrient loss. This study uses bioinformatics to identify key genes linked to nitrogen use efficiency, providing insights for genetic improvement and sustainable cultivation.Protein-protein interaction (PPI) networks, functional enrichment, and structural modeling were employed to uncover candidate genes regulating nitrogen uptake and metabolism. Sixty-two nitrogen use efficiency associated genes from rice (Oryza sativa) were analyzed via BLASTp against the E. guineensis genome (NCBI), selecting those with >80% similarity. PPI networks were constructed using STRING-db and analyzed in Cytoscape v3.7.1. Functional enrichment (Gene Ontology) and structural analysis (AlphaFold, PyMol v2.5.4) were performed. Twelve nitrogen use efficiency related genes were identified, with CESA4, CESA7, and CESA9 emerging as key regulators based on high degree and betweenness values in PPI analysis. These genes are linked to plant cell wall biosynthesis. Structural analysis showed high similarity to rice homologs, with RMSD values of 0.338 Å (CESA4) and 0.396 Å (CESA9), indicating strong conservation area. Their structural relevance suggests they are promising targets for molecular breeding marker to enhance nitrogen utilization and sustainability in oil palm.

Article Details

How to Cite
Permatasari, G. W., Setiowati, R. D., & Wening, S. (2025). IDENTIFICATION OF KEY NITROGEN USE EFFICIENCY-RELATED GENES IN OIL PALM USING BIOINFORMATICS APPROACHES. Jurnal Bioteknologi Dan Biosains Indonesia, 12(1), 194–211. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/10477
Section
Articles

References

Agnihotry S, Rajesh KP, Dev BS, Apoorv T, Imran H (2022) Chapter 11 - Protein structure prediction. Academic Press. doi.org/10.1016/B978-0-323-89775-4.00023-7.

Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. doi: 10.1038/nrg2918

Bojović B, Marković A (2009) Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujev J Sci 31:69–74

Bossoni GEB, Stata M, Almeida AM, Constantin RP, Ferrarese-Filho O, Sage RF, dos Santos WD (2022) Cell wall nitrogen use efficiency: Assessing the impact of type 1 and type 2 cell wall architectures on the nitrogen economy in C3 and C4 plants

Camargo ELO, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJPL, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira GAG (2014) Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol 14:256. doi:10.1186/s12870-014-0256-9.

Corley RH V, Tinker PB (2016) The Oil Palm, Fifth Edition. Wiley Blackwell, Chichester

Doncheva NT, Morris JH, Holze H, Kirsch R, Nastou KC, Cuesta-Astroz Y, Rattei T, Szklarczyk D, von Mering C, Jensen LJ (2002) Cytoscape stringApp 2.0: Analysis and Visualization of Heterogeneous Biological Networks. J Proteome Res 22(2):637-646. doi: 10.1021/acs.jproteome.2c00651.

Faik A, Bar-Peled M, DeRocher AE, Zeng W, Perrin RM, Wilkerson C, Raikhel N V., Keegstra K (2000) Biochemical characterization and molecular cloning of an α-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J Biol Chem 275:15082–15089. doi: 0.1074/jbc.M000677200

Jensen JK, Sørensen SO, Harholt J, Geshi N, Sakuragi Y, Møller I, Zandleven J, Bernal AJ, Jensen NB, Sørensen C, Pauly M, Beldman G, Willats WGT, Scheller HV (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302. doi: 10.1105/TPC.107.050906

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi: 10.1038/s41586-021-03819-2

Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Methods Mol Biol 857:231–257. doi: 10.1007/978-1-61779-588-6_10

Kumari S, Sharma N, Raghuram N (2021) Meta-analysis of yield-related and N-responsive genes reveals chromosomal hotspots, key processes and candidate genes for nitrogen-use efficiency in rice. Front Plant Sci 12. doi: 10.3389/fpls.2021.627955

Kusin FM, Akhir NIM, Mahamat-Yusuff F, Auang M (2015) The impact of nitrogen fertilizer use on greenhouse gas emissions in an oil palm plantation associated with land use change. Atmósfera 28:243–250. doi: 10.20937/ATM.2015.28.04.03

Lau BYC, Othman A, Ramli US (2018) Application of proteomics technologies in oil palm research. Protein J 37:473–499. doi: 10.1007/s10930-018-9802-x

Lema, M (2018) Marker Assisted Selection in Comparison to Conventional Plant Breeding: Review Article. J Agric Sci Technol 14(2): 555914.

Maryanto SD, Tanjung ZA, Roberdi R, Sudania W, Made, Pujianto P, Hairinsyah H, Utomo C, Liwang T (2021) Involvement of purple acid phosphatase gene into nitrogen uptake of oil palm (Elaeis guineensis). Biodiversitas J Biol Divers 22. doi: 10.13057/biodiv/d220340

Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E (2022) Nitrogen and phosphorus deficiencies alter primary and secondary metabolites of soybean roots. ioRxiv preprint. doi: http://dx.doi.org/10.1101/2022.03.14.484309

Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen‐use efficiency. Funct Ecol 18:419–425. doi: 10.1111/j.0269-8463.2004.00847.x

Rivai RR, Miyamoto T, Awano T, Takada R, Tobimatsu Y, Umezawa T, Kobayashi M (2021) Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Sci Rep 11:23309. doi: 10.1038/s41598-021-02570-y

Ruiz-Romero R, De la Peña M, Ayala-Díaz I, Montoya C, Romero HM (2024) Genotype and nitrogen source influence drought stress response in oil palm seedlings. Agronomy 14:2082. doi: 10.3390/AGRONOMY14092082

Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS (2021) EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC Plant Biol 21:59. doi: 10.1186/s12870-020-02812-7

Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656. doi: 10.1038/ng.2958

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612. doi: 10.1093/nar/gkaa1074

Theobald DL, Wuttke DS (2005) Divergent evolution within protein superfolds inferred from profile-based phylogenetics. J Mol Biol 354:722–737. doi: 10.1016/j.jmb.2005.08.071

The PyMOL Molecular Graphics System, Version 2.5.4, Schrödinger, LLC

Wang D, Xu T, Yin Z, Wu W, Geng H, Li L, Yang M, Cai H, Lian X (2020) Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition. Front Plant Sci 11. doi: 10.3389/fpls.2020.00369

Wei Q, Wei Q, Xu J, Liu Y, Wang D, Chen S, Qian W, He M, Chen P, Zhou X, Qi Z (2024) Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives. Agric Water Manag 296:108791. doi: 10.1016/j.agwat.2024.108791

Zhang A (2009) Protein Interaction Networks: Computational Analysis. Cambridge University Press, Buffalo

Zhong R, Ye Z-H (2003) Unraveling the functions of glycosyltransferase family 47 in plants. Trends Plant Sci 8:565–568. doi: 10.1016/j.tplants.2003.10.003

Similar Articles

You may also start an advanced similarity search for this article.