OPTIMIZATION AND EFFICIENCY ANALYSIS OF REAL-TIME PCR FOR LEPTOSPIRA SPP. DIAGNOSIS BASED ON THE LIPL32 GENE

Main Article Content

Rizal Pratama Sulaeman
Rohayati
Fusvita Merdekawati
Yuliansyah Sundara Mulia

Abstract

Leptospirosis is a widespread zoonotic infection that endangers the health of both humans and animals, particularly in tropical and subtropical regions. Therefore, timely, sensitive and specific laboratory confirmation is essential for early clinical management. The LipL32 gene is a highly conserved virulence factor in pathogenic Leptospira. Real-time PCR provides rapid detection with high sensitivity and specificity. This study optimized real-time PCR conditions by evaluating annealing temperatures (60°C, 61°C, 62°C), primer concentrations (500 nM, 700 nM, 900 nM), and probe concentrations (250 nM, 300 nM). PCR efficiency was analyzed using absolute quantification with serial DNA dilutions (100 to 10⁻⁴). The optimal conditions were 60°C annealing temperature, 500 nM primers, and 300 nM probes. Near-ideal efficiency (97%) was achieved at 60°C with 500 nM
primers and 250 nM or 300 nM probes, while 103% efficiency was observed at 61°C with 500 nM primers and 250 nM probes. This optimization enhances Leptospira detection accuracy using real-time PCR.

Article Details

How to Cite
Sulaeman, R. P., Rohayati, Merdekawati, F., & Sundara Mulia, Y. (2025). OPTIMIZATION AND EFFICIENCY ANALYSIS OF REAL-TIME PCR FOR LEPTOSPIRA SPP. DIAGNOSIS BASED ON THE LIPL32 GENE. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(2), 382–390. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/10646
Section
Articles

References

Ahmed AA, Goris MGA, Meijer MC (2020) Development of lipL32 real-time PCR combined with an internal and extrac-tion control for pathogenic Leptospira detection. PLoS One 15. https://doi.org/10.1371/journal.pone.0241584

Annisa T, Sitasiwi AJ, Isdadiyanto S, Jan-nah SN (2021) Studi Histopatologi Ren Tikus Putih (Rattus Norvegicus L.) Diabetes Setelah Pemberian Cuka dari Kulit Nanas (Ananas Comosus (L.) Mer.). Jurnal Sain Veteriner 39:256–260. https://doi.org/10.22146/JSV.56891

Biosistemika (2017) Understanding qPCR Efficiency and Why It Exceeds 100%. https://biosistemika.com/blog/qpcr-efficiency-over-100/. Accessed 11 Dec 2024

Farrell RE (2023) Quantitative PCR tech-niques. RNA Methodologies 301–349. https://doi.org/10.1016/B978-0-323-90221-2.00037-0

Galloway RL, Hoffmaster AR (2015) Opti-mization of LipL32 PCR assay for in-creased sensitivity in diagnosing lep-tospirosis. Diagn Microbiol Infect Dis 82:199–200. https://doi.org/10.1016/j.diagmicrobio.2015.03.024

Gayathri R, Archana V, Ramya M (2022) Molecular Diagnostic Methods For The Detection of Leptospirosis. J Pure Appl Microbiol 16:782–795. https://doi.org/10.22207/JPAM.16.2.24

González S, Geymonat JP, Hernández E, Marqués JM, Schelotto F, Varela G (2013) Usefulness of real-time PCR assay targeting lipL32 gene for diag-nosis of human leptospirosis in Uru-guay. J Infect Dev Ctries 7:941–945. https://doi.org/10.3855/JIDC.4110

Green MR, Sambrook J (2018) Optimizing Primer and Probe Concentrations for Use in Real-Time Polymerase Chain Reaction (PCR) Assays. Cold Spring Harb Protoc 2018:pdb.prot095018. https://doi.org/10.1101/PDB.PROT095018

Handayani FD (2019) Buku_Leptospirosis Farida handayani, 2019. Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan, Jakarta

Hsu SH, Yang CW (2022) Insight into the Structure, Functions, and Dynamics of the Leptospira Outer Membrane Pro-teins with the Pathogenicity. Mem-branes (Basel) 12. https://doi.org/10.3390/MEMBRANES12030300

Karuniawati A, Yasmon A, Ningsih I (2012) Optimizing real-time PCR method to detect Leptospira spp. in human blood and urine specimens. Medical Journal of Indonesia 21:13–7. https://doi.org/10.13181/MJI.V21I1.472

Limothai U, Lumlertgul N, Sirivongrangson P, Kulvichit W, Tachaboon S, Dinhuzen J, Chaisuriyong W, Peerapornratana S, Chirathaworn C, Praditpornsilpa K, Eiam-Ong S, Tung-sanga K, Srisawat N (2021) The role of leptospiremia and specific immune response in severe leptospirosis. Sci Rep 11. https://doi.org/10.1038/s41598-021-94073-z

Ng W (2023) Effect of template and primer-probe concentration level on shape of qPCR amplification curve. https://doi.org/10.21203/RS.3.RS-3051803/V1

Otto GM, Franklin CL, Clifford CB (2015) Biology and Diseases of Rats. Labor-atory Animal Medicine 151. https://doi.org/10.1016/B978-0-12-409527-4.00004-3

Ruijter JM, Barnewall RJ, Marsh IB, Szen-tirmay AN, Quinn JC, Van Houdt R, Gunst QD, Van Den Hoff MJB (2021) Efficiency Correction Is Required for Accurate Quantitative PCR Analysis and Reporting. Clin Chem 67:829–842. https://doi.org/10.1093/CLINCHEM/HVAB052

Schmidt PJ, Acosta N, Chik AHS, D’Aoust PM, Delatolla R, Dhiyebi HA, Glier MB, Hubert CRJ, Kopetzky J, Mangat CS, Pang XL, Peterson SW, Prystajecky N, Qiu Y, Servos MR, Emelko MB (2023) Realizing the val-ue in “non-standard” parts of the qPCR standard curve by integrating fundamentals of quantitative microbi-ology. Front Microbiol 14:1048661. https://doi.org/10.3389/FMICB.2023.1048661/BIBTEX

Stoddard RA (2013) Detection of Pathogen-ic Leptospira spp. Through Real-Time PCR (qPCR) Targeting the LipL32 Gene. Methods in Molecular Biology 943:257–266. https://doi.org/10.1007/978-1-60327-353-4_17

Than NT, Trang TTQ, Tung PT, Lan VTT (2023) Development of a Standard Curve for Quantification of LINE-1 Methylation on Real-time PCR Sys-tems. VNU Journal of Science: Medi-cal and Pharmaceutical Sciences 39. https://doi.org/10.25073/2588-1132/VNUMPS.4532

Thermo Fisher Scientific (2023) PCR Cy-cling Parameters—Six Key Consider-ations for Success. https://www.thermofisher.com/id/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-reagents-enzymes/pcr-cycling-considerations.html. Accessed 11 Dec 2024

Valente M, Bramugy J, Keddie SH, Hopkins H, Bassat Q, Baerenbold O, Bradley J, Falconer J, Keogh RH, Newton PN, Picardeau M, Crump JA (2024) Diag-nosis of human leptospirosis:

systematic review and meta-analysis of the diagnostic accuracy of the Lep-tospira microscopic agglutination test, PCR targeting Lfb1, and IgM ELISA to Leptospira fainei serovar Hurstbridge. BMC Infect Dis 24:1–22. https://doi.org/10.1186/S12879-023-08935-0/TABLES/6

Villarreal-Julio RG, Murillo Ramos E, Ramí-rez-García R, Peláez-Sánchez RG,

Agudelo-Flórez PM (2022) Narrative review of generalities of the genus Leptospira and its virulence factors associated with renal pathophysiolo-gy. Rev Med Hondur 90:160–166. https://doi.org/10.5377/RMH.V90I2.15201

Waggoner JJ, Balassiano I, Mohamed-Hadley A, Vital-Brazil JM, Sahoo MK, Pinsky BA (2015) Reverse-Transcriptase PCR Detection of Lep-tospira: Absence of Agreement with Single-Specimen Microscopic Agglu-tination Testing. PLoS One 10:e0132988. https://doi.org/10.1371/JOURNAL.PONE.0132988

Wang S, Dunn N (2024) Leptospirosis. StatPearls

Whale AS, von der Heide EK, Kohlenberg M, Brinckmann A, Baedker S, Karalay O, Fernandez-Gonzalez A, Busby EJ, Bustin SA, Hauser H, Missel A, O’Sullivan DM, Huggett JF, Pfaffl MW, Nolan T (2022) Digital PCR can augment the interpretation of RT-qPCR Cq values for SARS-CoV-2 di-agnostics. Methods 201:5–14. https://doi.org/10.1016/J.YMETH.2021.08.006

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.