IN-SILICO ANALYSIS OF THE INTERACTION BETWEEN D7 PROTEIN FROM THE SALIVARY GLAND OF Ae. albopictus AND Thromboxane A2 FOR DEVELOPING ANTIPLATELET AGENT

Main Article Content

Syubbanul Wathon
Kartika Senjarini
Rike Oktarianti
Asmoro Lelono

Abstract

The salivary glands of mosquito vector diseases contain various biological components which facilitate blood-feeding into the host's body. These components are mostly protein molecules. Numerous protein molecules in the salivary glands have gained substantial research emphasis to determine their role and function, including those in the salivary glands of Ae. albopictus. D7 protein is the main component in Aedes salivary glands, which aids in inhibiting platelet aggregation by binding to the Thromboxane A2 (TxA2) during the blood-feeding. TxA2 is a eicosanoid molecule that stimulates platelet aggregation. The protein's ability to bind TxA2 shows that this protein has potential as a new antiplatelet agent. The examination of the D7 protein in binding TxA2 was performed through an in-silico approach using the molecular docking method. This research included selecting the 3D model of the D7 protein and the TxA2 ligand, preparing the 3D model of the D7 protein, native ligands, and test ligands, targeted molecular docking method, validating the molecular docking, analysis and visualization of the docking results. The molecular docking validation shows an RMSD value of 1.657 Å. The results of molecular docking show an ΔG value of -5.60 kcal/mol, meaning that the D7 protein can bind to the TxA2 ligand stably and spontaneously. The active site of the D7 protein in binding the TxA2 ligand consists of several amino acid residues, namely THR 190, GLU 268, TYR 178, PHE 154, ILE 175, ARG176, VAL 293, TYR 248, and TYR 178. The ability of D7 protein to bind TxA2 as an inducer of platelet aggregation has demonstrated its potential as a novel antiplatelet agent. These results can pave further development of drug discovery in the medical and pharmaceutical fields.

Article Details

How to Cite
Wathon, S., Senjarini, K., Oktarianti, R., & Lelono, A. (2025). IN-SILICO ANALYSIS OF THE INTERACTION BETWEEN D7 PROTEIN FROM THE SALIVARY GLAND OF Ae. albopictus AND Thromboxane A2 FOR DEVELOPING ANTIPLATELET AGENT. Jurnal Bioteknologi Dan Biosains Indonesia, 12(1), 212–227. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/8176
Section
Articles

References

Afriza D, Suriyah WH, Ichwan SJA (2018) In silico analysis of molecular interac-tions between the anti-apoptotic pro-tein survivin and dentatin, nordentatin, and quercetin. J Phys: Conf Ser 1073:032001. https://doi.org/10.1088/1742-6596/1073/3/032001

Ahmed MZS (2021) Homology Modeling and Structural Analysis of theFla-vanone 3- Hydroxylase (F3H) and Flavonoid 3`hydroxylase (F3`H) Genes from Ginkgo biloba (L.). IOSR-JBB 7:01–21. https://doi.org/10.9790/264X-0701020121

Alhazmi MI (2015) Molecular docking of se-lected phytocompounds with H1N1 Proteins. Bioinformation 11:196–202. https://doi.org/10.6026/97320630011196

Alsafi MA, Hughes DL, Said MA (2020) First COVID-19 mol­ecular docking with a chalcone-based compound: synthesis, single-crystal structure and Hirshfeld surface analysis study. Acta Cryst C 76:1043–1050. https://doi.org/10.1107/S2053229620014217

Alvarenga PH, Andersen JF (2023) An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. Biology 12:39. https://doi.org/10.3390/biology12010039

Alvarenga PH, Dias DR, Xu X, Francischetti IMB, Gittis AG, Arp G, Garboczi DN, Ribeiro JMC, Andersen JF (2022) Functional aspects of evolution in a cluster of salivary protein genes from mosquitoes. Insect Biochem Mol Biol 146:103785. https://doi.org/10.1016/j.ibmb.2022.103785

Arwansyah A, Ambarsari L, Sumaryada T (2014) Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai In-hibitor Reseptor Androgen pada Kanker Prostat. CB 1:11–19. https://doi.org/10.29244/cb.1.1.11-19

Attique SA, Hassan M, Usman M, Atif RM, Mahboob S, Al-Ghanim KA, Bilal M, Nawaz MZ (2019) A Molecular Dock-ing Approach to Evaluate the Phar-macological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension. Int J Envi-ron Res Public Health 16:923. https://doi.org/10.3390/ijerph16060923

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quater-nary structure using evolutionary in-formation. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Mur-ray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom

structure validation for macromolecu-lar crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. https://doi.org/10.1107/S0907444909042073

Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J (2021) High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep 11:23696. https://doi.org/10.1038/s41598-021-03211-0

Clinton JLS, Vogt MB, Kneubehl AR, Hibl BM, Paust S, Rico-Hesse R (2023) Sialokinin in mosquito saliva shifts human immune responses towards in-tracellular pathogens. PLOS Neglect-ed Tropical Diseases 17:e0011095. https://doi.org/10.1371/journal.pntd.0011095

Conway MJ, Londono-Renteria B, Troupin A, Watson AM, Klimstra WB, Fikrig E, Colpitts TM (2016) Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Negl Trop Dis 10:e0004941. https://doi.org/10.1371/journal.pntd.0004941

Dhorajiwala TM, Halder ST, Samant L (2019) Comparative In Silico Molecu-lar Docking Analysis of L-Threonine-3-Dehydrogenase, a Protein Target Against African Trypanosomiasis Us-ing Selected Phytochemicals. J Appl Biotechnol Rep 6:101–108. https://doi.org/10.29252/JABR.06.03.04

Duan G, Ji C, H. Zhang JZ (2020) Develop-ing an effective polarizable bond method for small molecules with ap-plication to optimized molecular dock-ing. RSC Adv 10:15530–15540. https://doi.org/10.1039/D0RA01483D

Endriyatno NC, Walid M (2022) Studi In Sil-ico Kandungan Senyawa Daun Sri-kaya (Annona squamosa L.)Terhadap Protein Dihydrofolate Reductase Pa-da Mycobacterium tuberculosis. Pharmacon 19:87–98. https://doi.org/10.23917/pharmacon.v19i1.18044

Fadlan A, Nusantoro YR (2021) The Effect of Energy Minimization on The Molec-ular Docking of Acetone-Based Oxin-dole Derivatives. JKPK 6:69–77. https://doi.org/10.20961/jkpk.v6i1.45467

Ferencz L, Lucia M (2015) Identification of new superwarfarin-type rodenticides by structural similarity. The docking of ligands on the vitamin K epoxide re-ductase enzyme’s active site. Acta Univ Sapientiae Agric Environ 7. https://doi.org/10.1515/ausae-2015-0010

Ferreira-de-Lima VH, Andrade P dos S, Thomazelli LM, Marrelli MT, Urbinatti PR, Almeida RMM de S, Lima-Camara TN (2020) Silent circulation of dengue virus in Aedes albopictus (Diptera: Culicidae) resulting from natural vertical transmission. Sci Rep 10:3855. https://doi.org/10.1038/s41598-020-60870-1

Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L (2011) Implication of haematopha-gous arthropod salivary proteins in host-vector interactions. Parasites Vectors 4:187. https://doi.org/10.1186/1756-3305-4-187

Forouzesh N, Mishra N (2021) An Effective MM/GBSA Protocol for Absolute Bind-ing Free Energy Calculations: A Case Study on SARS-CoV-2 Spike Protein and the Human ACE2 Receptor. Mol-ecules 26:2383. https://doi.org/10.3390/molecules26082383

Furmanová K, Kozlíková B, Vonásek V, Byška J (2019) DockVis: Visual Anal-ysis of Molecular Docking Data. EG VCBM 10 pages. https://doi.org/10.2312/VCBM.20191238

Głowacki ED, Irimia-Vladu M, Bauer S, Serdar Sariciftci N (2013) Hydrogen-bonds in molecular solids – from bio-logical systems to organic electronics. J Mater Chem B 1:3742–3753. https://doi.org/10.1039/C3TB20193G

Gómez-Jeria J-S, Robles-Navarro A, Kpotin G, Garrido-Sáez N, Nelson G-D (2020) Some remarks about the rela-tionships between the common skele-ton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interac-tions

Govindan L, Anbazhagan S, Altemimi AB, Lakshminarayanan K, Kuppan S, Pratap-Singh A, Kandasamy M (2020) Efficacy of Antimicrobial and Larvicid-al Activities of Green Synthesized Sil-ver Nanoparticles Using Leaf Extract of Plumbago auriculata Lam. Plants 9:1577. https://doi.org/10.3390/plants9111577

Guerrero D, Cantaert T, Missé D (2020) Ae-des Mosquito Salivary Components and Their Effect on the Immune Re-sponse to Arboviruses. Front Cell In-fect Microbiol 10

Huey WR, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular Graphics Laboratory

Jablonka W, Kim IH, Alvarenga PH, Valen-zuela JG, Ribeiro JMC, Andersen JF (2019) Functional and structural simi-larities of D7 proteins in the inde-pendently-evolved salivary secretions of sand flies and mosquitoes. Sci Rep 9:5340. https://doi.org/10.1038/s41598-019-41848-0

Kanduc D (2012) Homology, similarity, and identity in peptide epitope immunodef-inition. J Pept Sci 18:487–494. https://doi.org/10.1002/psc.2419

Kataria R, Khatkar A (2019) In-silico design, synthesis, ADMET studies and biolog-ical evaluation of novel derivatives of Chlorogenic acid against Urease pro-tein and H. Pylori bacterium. BMC Chemi 13:41. https://doi.org/10.1186/s13065-019-0556-0

Khor BY, Tye GJ, Lim TS, Choong YS (2015) General overview on structure prediction of twilight-zone proteins. Theor Biol Med Model 12:15. https://doi.org/10.1186/s12976-015-0014-1

Kolina J, Sumiwi S, Levita J (2019) MODE IKATAN METABOLIT SEKUNDER DI TANAMAN AKAR KUNING (Arcange-lisia flava L.) DENGAN NITRAT OKSIDA SINTASE. FITOFARMAKA 8:45–52. https://doi.org/10.33751/jf.v8i1.1171

Kumar D, Kumar R, Ramajayam R, Lee KW, Shin D-S (2021) Synthesis, Anti-oxidant and Molecular Docking Stud-ies of (-)-Catechin Derivatives. J Ko-rean Chem Soc 65:106–112. https://doi.org/10.5012/jkcs.2021.65.2.106

Li Z, Ji C, Cheng J, Åbrink M, Shen T, Kuang X, Shang Z, Wu J (2022) Ae-des albopictus salivary proteins aden-osine deaminase and 34k2 interact with human mast cell specific prote-ases tryptase and chymase. Bioengi-neered 13:13752–13766. https://doi.org/10.1080/21655979.2022.2081652

Mans BJ, Calvo E, Ribeiro JMC, Andersen JF (2007) The Crystal Structure of D7r4, a Salivary Biogenic Amine-binding Protein from the Malaria Mos-quito Anopheles gambiae*. J Biol Chem 282:36626–36633. https://doi.org/10.1074/jbc.M706410200

Marín-López A, Raduwan H, Chen T-Y, Utrilla-Trigo S, Wolfhard DP, Fikrig E (2023) Mosquito Salivary Proteins and Arbovirus Infection: From Viral En-hancers to Potential Targets for Vac-cines. Pathogens 12:371. https://doi.org/10.3390/pathogens12030371

Martínez L (2015) Automatic Identification of Mobile and Rigid Substructures in Mo-lecular Dynamics Simulations and Fractional Structural Fluctuation Anal-ysis. PLOS ONE 10:e0119264. https://doi.org/10.1371/journal.pone.0119264

Martin-Martin I, Kern O, Brooks S, Smith LB, Valenzuela-Leon PC, Bonilla B, Ackerman H, Calvo E (2021) Bio-chemical characterization of AeD7L2 and its physiological relevance in blood feeding in the dengue mosquito vector, Aedes aegypti. FEBS J 288:2014–2029. https://doi.org/10.1111/febs.15524

Martin-Martin I, Smith LB, Chagas AC, Sá-Nunes A, Shrivastava G, Valenzuela-Leon PC, Calvo E (2020) Aedes al-bopictus D7 Salivary Protein Prevents Host Hemostasis and Inflammation. Biomolecules 10:1372. https://doi.org/10.3390/biom10101372

Minovski DN (2021) MOLECULAR DOCK-ING CALCULATIONS UTILIZING DISCOVERY STUDIO & PIPELINE PILOT

Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A (2021) Observation of an Unusually Large IR Red-Shift in an Unconven-tional S–H···S Hydrogen-Bond. J Phys Chem Lett 12:1228–1235. https://doi.org/10.1021/acs.jpclett.0c03183

Oktarianti R, Khasanah RN, Wathon S, Senjarini K (2021) Detection of immu-nogenic protein from salivary gland of Aedes albopictus. Univ Med 40:234–242. https://doi.org/10.18051/UnivMed.2021.v40.234-242

Pratama MRF (2016) Studi Docking Mole-kular Senyawa Turunan Kuinolin Ter-hadap Reseptor Estrogen-Α: Study of Molecular Docking of Quinoline De-rivative Compounds against Estrogen-A Receptors. J Surya Medika 2:1–7. https://doi.org/10.33084/jsm.v2i1.215

Ramírez D, Caballero J (2018) Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Struc-tural Data? Molecules 23:1038. https://doi.org/10.3390/molecules23051038

Rucker D, Dhamoon AS (2024) Physiology, Thromboxane A2. In: StatPearls. StatPearls Publishing, Treasure Is-land (FL)

Saputra DPD, Susanti NMP (2018) Molecu-lar Docking Sianidin dan Peonidin se-bagai Antiinflamasi pada Aterosklero-sis secara In Silico. JFU 7:28–33

Sari IW, Junaidin J, Pratiwi D (2020) STUDI MOLECULAR DOCKING SENYAWA FLAVONOID HERBA KUMIS KUC-ING (Orthosiphon stamineus B.) PA-DA RESEPTOR α-GLUKOSIDASE SEBAGAI ANTIDIABETES TIPE 2. FARM 7:54. https://doi.org/10.47653/farm.v7i2.194

Sastry GM, Adzhigirey M, Day T, Anna-bhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

Sharma S, Sarkar S, Paul SS, Roy S, Chat-topadhyay K (2013) A small molecule chemical chaperone optimizes its un-folded state contraction and denatur-ant like properties. Sci Rep 3:3525. https://doi.org/10.1038/srep03525

Shrivastava G, Valenzuela-Leon PC, Cha-gas AC, Kern O, Botello K, Zhang Y, Martin-Martin I, Oliveira MB, Tirloni L, Calvo E (2022) Alboserpin, the Main Salivary Anticoagulant from the Dis-ease Vector Aedes albopictus, Dis-plays Anti–FXa-PAR Signaling In Vitro and In Vivo. ImmunoHorizons 6:373–383. https://doi.org/10.4049/immunohorizons.2200045

Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T (2020) QMEANDisCo—distance con-straints applied on model quality esti-mation. Bioinformatics 36:1765–1771. https://doi.org/10.1093/bioinformatics/btz828

Susanti NMP, Laksmiani NPL, Noviyanti NKM, Arianti KM, Duantara IK (2019) MOLECULAR DOCKING TER-PINEN-4-OL SEBAGAI ANTI-INFLAMASI PADA ATEROSKLE-ROSIS SECARA IN SILICO. JCHEM 221. https://doi.org/10.24843/JCHEM.2019.v13.i02.p16

Szczuko M, Kozioł I, Kotlęga D, Brodowski J, Drozd A (2021) The Role of Throm-boxane in the Course and Treatment of Ischemic Stroke: Review. Int J Mol Sci 22:11644. https://doi.org/10.3390/ijms222111644

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP (2019) Key Topics in Molecular Docking for Drug Design. Int J Mol Sci 20:4574. https://doi.org/10.3390/ijms20184574

Umamaheswari M, Madeswaran A, Asokkumar K (2013) Virtual Screen-ing Analysis and In-vitro Xanthine Ox-idase Inhibitory Activity of Some Commercially Available Flavonoids. Iran J Pharm Res 12:317–323

Wang C, Cao X, Dong M, Zhang L, Liu J, Cao X, Xue X (2021) Theoretical Cal-culation of Self-Propagating High-Temperature Synthesis (SHS) Prepa-ration of AlB12

Wathon S, Afkarina I, Rohmah U, Oktarianti R, Senjarini K (2022a) In Vitro Analy-sis of Human IgG Immune Response Against 31 kDa and 67 kDa Immuno-genic Protein from Aedes albopictus Salivary Glands. In 4th International Conference on Life Sciences and Bio-technology (ICOLIB 2021) 122–134

Wathon S, Oktarianti R, Senjarini K (2024) Molecular Docking of Interaction be-tween D7 Protein from the Salivary Gland of Aedes aegypti and Leukotri-ene A4 for Developing Thrombolytic Agent. BIO Web Conf 101:04002. https://doi.org/10.1051/bioconf/202410104002

Wathon S, Purwati W, Oktarianti R, Senja-rini K (2022b) IgG IMMUNE RE-SPONSE AGAINST SALIVARY GLAND PROTEIN EXTRACT OF DENGUE VECTOR Aedes aegypti. J Appl Biol Sci 16:483–492

Wichit S, Ferraris P, Choumet V, Missé D (2016) The effects of mosquito saliva on dengue virus infectivity in humans. Curr Opin Virol 21:139–145. https://doi.org/10.1016/j.coviro.2016.10.001

Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y (2019) Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Phar-macol Therapeut 203:107393. https://doi.org/10.1016/j.pharmthera.2019.107393