BIOINFORMATIC ANALYSIS OF SUBTILISIN-K2 FROM INDONESIAN MOROMI: EVALUATION OF ITS ANTITHROMBOTIC POTENTIAL FOR FUNCTIONAL FOOD APPLICATION

Main Article Content

Fathma Syahbanu
Ratih Kurniasari
Linda Riski Sefrina
Muhammad Alfid Kurnianto

Abstract

Microbial fibrinolytic enzymes are commonly found in various fermented foods of both plant and animal origin. While extensive studies have been conducted in Japan, Korea, and China, research in Indonesia remains limited despite its rich diversity of fermented foods. Moromi, an intermediate product of soy sauce fermentation, contains Subtilisin-K2, an enzyme proven in vitro to degrade fibrin and fibrinogen, indicating potential antithrombotic activity. This study investigated the antithrombotic properties of Subtilisin-K2 using bioinformatic approaches, including molecular docking (HADDOCK) and molecular dynamics (GROMACS). Subtilisin-K2 exhibited strong binding affinities with fibrin, fibrinogen, PAI-1, PAI-2, and α-antiplasmin, with Gibbs free energy values of –19.4, –15.6, –15.7, –18.2, and –13.3 kcal/mol, respectively. Molecular dynamics confirmed the stability of these complexes. These findings suggest that Subtilisin-K2 from Indonesian moromi exhibits significant bioactivity, underscoring the potential of Indonesian fermented products as valuable sources of functional enzymes, especially as antithrombotic potential.

Article Details

How to Cite
Syahbanu, F., Kurniasari, R., Riski Sefrina, L., & Kurnianto, M. A. (2025). BIOINFORMATIC ANALYSIS OF SUBTILISIN-K2 FROM INDONESIAN MOROMI: EVALUATION OF ITS ANTITHROMBOTIC POTENTIAL FOR FUNCTIONAL FOOD APPLICATION. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(2), 361–374. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/13669
Section
Articles

References

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molec-ular simulations through multi-level parallelism from laptops to supercom-puters. SoftwareX 1:19–25

Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL work-space: A web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770

Benjamin EJ, Muntner P, Alonso A, Bitten-court MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56–e528

Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cas-sarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: Modelling protein tertiary and quater-nary structure using evolutionary in-formation. Nucleic Acids Res 42:1–7. https://doi.org/10.1093/nar/gku340

Cesarman-Maus G, Hajjar KA (2005) Mo-lecular mechanisms of fibrinolysis. Br J Haematol 129:307–321. https://doi.org/10.1111/j.1365-2141.2005.05444.x

Egea MB, Gautério GV, dos Santos DC, Ferreira FP, Rodrigues CAP, Coutinho GSM, Lemes AC (2022) Adulteration and Safety Issues in Nutraceuticals and Functional Foods

Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B (2003) Tools for comparative protein structure modeling and analysis. Nu-cleic Acids Res 31:3375–3380

Herrero M, Hugas M, Lele U, Wirakarta-kusumah A, Torero M (2023) A shift to healthy and sustainable consumption patterns. Sci Innov food Syst Trans-form 59

Huang Y, Zhang X, Suo H (2021) Interaction between β-lactoglobulin and EGCG under high-pressure by molecular dy-namics simulation. PLoS One 16:e0255866

Kotb E (2014) The biotechnological poten-tial of fibrinolytic enzymes in the disso-lution of endogenous blood thrombi. Biotechnol Prog 30:656–672. https://doi.org/10.1002/btpr.1918

Kurnianto MA, Defri I, Syahbanu F, Aulia SS (2024a) Fish-derived bioactive pep-tide: Bioactivity potency, structural characteristics, and conventional and bioinformatics approaches for identifi-cation. Futur Foods 9:100386. https://doi.org/10.1016/j.fufo.2024.100386

Kurnianto MA, Syahbanu F, Hamidatun H, Defri I, Aristya Sanjaya Y (2023a) Pro-spects of bioinformatics approach for exploring and mapping potential bioac-tive peptide of Rusip (The traditional Indonesian fermented anchovy): A Re-view. Adv Food Sci Sustain Agric Agroindustrial Eng 6:116–133. https://doi.org/10.21776/ub.afssaae.2023.006.02.3

Kurnianto MA, Syahbanu F, Hamidatun H, Yushinta, Sanjaya A (2023b) Predic-tion and Mapping of Potential Bioactive Peptides from Traditional Fermented Anchovy (Rusip) using Bioinformatics Approaches. Squalen Bull Mar Fish Postharvest Biotechnol 18:93–105. https://doi.org/10.15578/squalen.725

Li Y, Zhu W, Chen L, Tang X, Ma A, Ma Y, Li T, Li X, Ma Y, Li J (2024) Modifica-tion of the active centre of nattokinase to enhance its thermostability using a strategy based on molecular dynamics simulation, steered dynamics simula-tion, and conservative prediction. Front Nutr 11:1505584

Lindorff‐Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma 78:1950–1958

Longstaff C, Kolev K (2015) Basic mecha-nisms and regulation of fibrinolysis. J Thromb Haemost 13:S98–S105

Maruyama Y, Igarashi R, Ushiku Y, Mitsutake A (2023) Analysis of Protein Folding Simulation with Moving Root Mean Square Deviation. J Chem Inf Model 63:1529–1541. https://doi.org/10.1021/acs.jcim.2c01444

Mohanasrinivasan V, Mohanapriya A, Potdar S, Chatterji S, Konne S, Kumari S, Keziah SM, Subathra Devi C (2017) In vitro and in silico studies on fibrino-lytic activity of nattokinase: A clot bust-er from Bacillus sp. Front Biol (Beijing) 12:219–225. https://doi.org/10.1007/s11515-017-1453-3

Repetto O, De Re V (2017) Coagulation and fibrinolysis in gastric cancer. Ann N Y Acad Sci 1404:27–48. https://doi.org/10.1111/nyas.13454

Sgroi F, Sciortino C, Baviera-Puig A, Modi-ca F (2024) Analyzing consumer trends in functional foods: A cluster analysis approach. J Agric Food Res 15:101041

Surya R (2024) Fermented foods of South-east Asia other than soybean-or sea-food-based ones. J Ethn Foods 11:27

Syahbanu F, Giriwono PE, Tjandrawinata RR, Suhartono MT (2022) Molecular docking of Subtilisin K2, a fibrin-degrading enzyme from Indonesian moromi, with its substrates. Food Sci Technol 42. https://doi.org/10.1590/fst.61820

Syahbanu F, Giriwono PE, Tjandrawinata RR, Suhartono MT (2020a) Molecular analysis of a fibrin-degrading enzyme from Bacillus subtilis K2 isolated from the Indonesian soybean-based fer-mented food moromi. Mol Biol Rep 47:8553–8563. https://doi.org/10.1007/s11033-020-05898-2

Syahbanu F, Kezia E, Puera N, Giriwono PE, Tjandrawinata RR, Suhartono MT (2020b) Fibrinolytic bacteria of indone-sian fermented soybean: Preliminary study on enzyme activity and protein profile. Food Sci Technol 40:458–465. https://doi.org/10.1590/fst.23919

Syahbanu F, Pawestri S (2023) Kajian En-zim Fibrinolitik pada Mikroorganisme Asal Pangan Fermentasi Asia: Review. J Teknol Has Pertan 16:41. https://doi.org/10.20961/jthp.v16i1.72623

Van Zundert GCP, Rodrigues JPGLM, Trel-let M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, Van Dijk M, De Vries SJ, Bonvin AMJJ (2016) The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Bio-molecular Complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

Vangone A, Bonvin AMJJ (2015) Contacts-based prediction of binding affinity in protein–protein complexes. Elife 4:1–15. https://doi.org/10.7554/eLife.07454

Vangone A, Rodrigues JPGLM, Xue LC, van Zundert GCP, Geng C, Kurkcuoglu Z, Nellen M, Narasimhan S, Karaca E, van Dijk M, Melquiond ASJ, Visscher KM, Trellet M, Kastritis PL, Bonvin AMJJ (2017) Sense and simplicity in HADDOCK scoring: Lessons from CASP-CAPRI round 1. Proteins Struct Funct Bioinforma 85:417–423. https://doi.org/10.1002/prot.25198

Venter de Villiers M, Cheng J, Truter L (2024) The Shift Towards Plant-Based Lifestyles: Factors Driving Young Con-sumers’ Decisions to Choose Plant-Based Food Products. Sustainability 16:9022

Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to gener-ate schematic diagrams of protein-ligand interactions The LIGPLOT pro-gram automatically generates sche-matic 2-D representations of protein-ligand complexes from standard Pro-tein Data Bank file input. Protein Eng 8:127–134

World Health Organization (2018) WHO | World Heart Day. Who

Wu H, Zhang Q, Suo H, Xu F, Huang W, Wang DO (2024) Nattokinase as a functional food ingredient: therapeutic applications and mechanisms in age-related diseases. Food Sci Hum Well-ness 13:2401–2409

Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32:3676–3678. https://doi.org/10.1093/bioinformatics/btw514

Yang L, Cao S, Xie M, Shi T (2024) Virtual screening, activity evaluation, and stability of pancreatic lipase inhibitors in the gastrointestinal degradation of nattokinase. Heliyon 10:e24868. https://doi.org/10.1016/j.heliyon.2024.e24868