Preliminary Power Budget Analysis for Equatorial Low Earth Orbit (LEO) Communication Satellite

Authors

  • Desti Ika Suryanti Satellite Technology Center, National Institute of Aeronautics and Space (LAPAN), Indonesia
  • Sri Ramayanti Satellite Technology Center, National Institute of Aeronautics and Space (LAPAN), Indonesia
  • Mohammad Mukhayadi Satellite Technology Center, National Institute of Aeronautics and Space (LAPAN), Indonesia

DOI:

https://doi.org/10.30536/j.jtd.2021.v19.a3479

Keywords:

Micro satellite, communication satellite, power budget, solar panel, li-ion battery

Abstract

Satellite Technology Center – LAPAN would develop a constellation of 9 communication satellites in a low equatorial orbit. These satellites would perform as data collection platforms for many sensors that spread across the Indonesian territory. The data from the sensors will be downlink to Indonesia’s ground stations in real-time. This research aims to analyze the power budget of those satellites to decide how many solar panels and batteries are required to perform their mission. The method in this research began by calculating the power requirements of each mission per orbit period to estimate power consumption and calculate the power generated by the solar panels. The results of these calculations will be implemented to the power system design to find the satellite solar cells/ panels arrangement and battery capacity allocation. To minimize the development time and cost, the solar array design in this study considers the utilization of previous solar panel design of LAPAN-A series satellites as a design constraint. This study shows the configuration of 3 body-mounted solar panels and 2 deployable solar panels could support the mission operation of communication satellite in the low equatorial orbit. For energy storage, these satellites should be equipped with 28 V Li-ion in the 8Sx3P configuration.

 

References

Abdi, B., Alimardani, A., Ghasemi, R., & Mirtalaei, S. M. M. (2013). Energy Storage Selection for LEO

Satellites. International Journal of Machine Learning and Computing, 3(3), 3–6. https://doi.org/10.7763/IJMLC.2013.V3.322

Amajama, J. (2016). Effect of Solar Illuminance ( or Intensity ) on Solar ( Photovoltaic) cell’s output

and the use of Converging lenses and X or Gamma rays to enhance output performance. International

Journal of Engineerng Research and General Science, 4(August), 284–289.

Apgar, H., Bearden, D. A., Bell, R., Berget, R. T., Blake, J. B., & Boden, D. G. (2005). Space Mission Analysis

and Design (Third). Microcosm Press and Kuwer Academic Publisher.

Asadnezhad, M., Eslamimajd, A., & Hajghassem, H. (2018). Optical system design of star sensor and

stray light analysis. Journal of the European Optical Society -Rapid Publications, 14, 1–11.

ASTM E490 Standar Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. (2006).

Borthomieu, Y. (2014). Satellite Lithium-Ion Batteries. In Lithium-Ion Batteries Advances and

Applications (pp. 311–344). https://doi.org/10.1016/B978-0-444-59513-3.00014-5

Company, C. (2016). 3G30C - Advanced 3G30C - Advanced. Retrieved October 8, 2019, from

http://www.azurspace.com/index.php/en/products/products-space/space-solar-cells

Dear, V. (2010). Potensi pemanfaatan sistem aprs untuk sarana penyebaran informasi kondisi cuaca

antariksa. 11(3), 72–79.

El-Ghonemy, A. M. . (2012). Photovoltaic Solar ENergy : Review. International Journal of Scientific &

Engineering Research, 3(11), 1–43.

Hardhienata, S., Triharjanto, R. H., & Mukhayadi, M. (2011). LAPAN-A2 : Indonesian Near-Equatorial

Surveilance Satellite. 18th Asia-Pacific Regional Space Agency Forum (APRSAF), 1–10. Singapore.

Hasbi, W., Kamirul, Mukhayadi, M., & Renner, U. (2019). The Impact of Space-Based AIS Antenna

Orientation on In-Orbit AIS Detection Performance. Applied Sciences, 9, 1–19.

Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., … Seok, S. Il. (2013). Efficient

inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric

hole conductors. Nature Photonics, 7(6), 486–491. https://doi.org/10.1038/nphoton.2013.80

Id, F. F. M., Sangawi, A. W. K., Hashim, S., Ghoshal, S. K., Abdullah, I. K., & Hameed, S. S. (2019). Simple

and efficient estimation of photovoltaic cells and modules parameters using approximation and

correction technique. Plos One, 14(5), 1–19.

Judianto, C. T., & Agung, W. (2014). Automatic Identification System And Surveillance Technology For

Indonesia Marine Security On Lapan-A2 Satellite. International Seminar Of Aerospace Science and

Technology, 2, 115–122.

Karim, A. (2015). Power Control Data Handling Satelit Lapan-A2. Aktualita, 10(4), 47–50.

Mukund, R. P. (2005). Spacecraft Power Systems. CRC Press.

Nurhayati, Y. (2014). Implementasi Automatic Dependent Surveillance Broadcast ( ADS-B ) di Indonesia

The Implementasion of Automatic Dependent Surveillance Broadcast ( ADS-B in Indonesia. Junral

Perhubungan Udara, 40, 147–162.

Saifudin, M. A., & Karim, A. (2016). LAPAN-A4 Concept and Design for Earth Observation and Maritime

Monitoring Missions. 2018 IEEE International Conference on Aerospace Electronics and Remote

Sensing Technology (ICARES), 5, 1–5. https://doi.org/10.1109/ICARES.2018.8547143

Saifudin, M. A., & Mukhayadi, M. (2013). LAPAN-A2 Attitude Control Strategy for Equatorial Surveillance

Mission. Proc. of the 9th IAA Symposium on Small Satellites for Earth Observation.

Santoni, F., Piergentili, F., Donati, S., Perelli, M., Negri, A., & Marino, M. (2014). An Innovative Deployable

Solar Panel System for Cubesats. Acta Astronautica, 95, 210–217.

https://doi.org/10.1016/j.actaastro.2013.11.011

Shaikh, M. Ri. S., Waghmare, S. B., Labade, S. S., Fuke, P. Vi., & Tekale, A. (2018). A Review Paper on

Electricity Generation from Solar Energy. International Journal for Research in Applied Science &

Engineering Technology, 5(IX), 1884–1889. https://doi.org/10.22214/ijraset.2017.9272

Suhermanto, . (2017). Pengujian Modul Pengolah Data Telemetri Lapan-a3/Ipb Untuk Menghasilkan

Produk Level-0 (the Testof Lapan-a3/Ipb Telemetry Data Processor Module To Produce Level-0 Product).

Jurnal Teknologi Dirgantara, 14(2), 125. https://doi.org/10.30536/j.jtd.2016.v14.a2510

Suryanti, D. I., Ramayanti, S., & Mukhayadi, M. (2019). Iluminasi Panel Surya pada Satelit Orbit Rendah

Ekuatorial. Elkomika, 7(3), 480–492.

Triharjanto, R. H., Hasbi, W., Widipaminto, A., Mukhayadi, M., & Renner, U. (2004). LAPAN-TUBSAT: Micro-

satellite platform for surveillance & remote sensing. European Space Agency, (Special Publication) ESA

SP, (571), 277–283.

Utama, S., Saifudin, M. A., & Mukhayadi, M. (2018). Momentum Biased Performance of LAPAN-A3

Satellite for Multispectral Pushbroom Imager Operation. Conference Series : Earth and Environmental Science.

IOP Publishing.

Zahran, M. (2006). In Orbit Performance of LEO Satellite Electrical Power Subsystem - SW Package for

Modelling and Simulation Based on MatLab . 7 GUI. International Conference on Energy and

Environmental Systems, (May), 379–384. Chalkida.

Downloads

Published

30-06-2021

How to Cite

Suryanti, D. I., Ramayanti, S., & Mukhayadi, M. (2021). Preliminary Power Budget Analysis for Equatorial Low Earth Orbit (LEO) Communication Satellite. Indonesian Journal of Aerospace, 19(1), 67–78. https://doi.org/10.30536/j.jtd.2021.v19.a3479

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.