ANALISIS KANDUNGAN ALUMINIUM POWDER PROPELAN BERDASAR ENERGI PEMBAKARAN DARI BOMB KALORIMETER (ANALYSIS OF PROPELLANT’S ALUMINUM POWDER CONTENT BASED ON BURNING ENERGY FROM BOMB CALORIMETER)
DOI:
https://doi.org/10.30536/j.jtd.2016.v14.a2949Keywords:
Analisis, Propelan, Aluminium, Kalorimeter bomAbstract
Telah dilakukan analisis hasil penelitian propelan dengan variabel kandungan aluminium terhadap hasil energi pembakaran. Pengukuran besarnya energi pembakaran propelan dilakukan dengan bomb calorimeter. Sampel propelan dibuat dengan mencampur HTPB dan aluminium selama 15 emnit dilanjutkan pencampuran dengan AP halus selama 20 menit, lalu dengan AP kasar selama 50 mrnit. Setelah pengadukan berakhir maka ditambahkan TDI dan diaduk selama 15 menit. Kandungan Al di variasi dari 8% hingga 18%. Energi pembakaran yang dihasilkan adalah 2885 kal/gr hingga 3750 kal/gr. Pada 18% Al energi pembakaran mulai menurun. Penurunan ini diakibatkan oleh sebagian besar sampel yang terbakar sama dengan sampel yang mengalami erosiv.
References
Campos, E.A; Rita C.L.D; Luis C; Milton F.D;
Wilma, M.N; and K. Iha, 2010. Performace
Evaluation of Commercial Copper
Chromites as Burning Rate Catalyst for
Solid propellant, J. Aerosp.Technol.
Manag., Vol 2 No 3, 323-330.
De Luca, L.T; Luciano G; Filippo Ma; Giovanni C;
Christian; Alice R; Staefano D; Marco F;
and A. Sossi, 2014. Characterization and
Combustion of Aluminum Nanopowders
in Energetic Systems, Wiley-VCH Verlag
GmbH & Co.
Hartaya, K; Luthfia H.A; dan Retno A, 2013.
Aplication of Density Property as
Alternative Propellant Performance for
Accelerating the Development of
Propellant Composition, Prosiding
International Seminar of Aeronautics
and Space Science and Technology,
Serpong.
Hartaya, K; Luthfia H.A; dan Retno A, 2014.
Penentuan Kandungan Oksidator Berdasar
Reaksi Stoikiometri dan Struktur Kristal
Dalam rangkan Adopsi Formulasi Propelan
HLP, Jurnal Teknologi Dirgantara Vol.
No. 2 Desember, 102-115.
Kishore, K., and K. Sridhara, 1999. Solid
Propellant Chemistry, Ministry of
Difense, New Delhi.
Kitinirunkul, Thirapat., Nattawat W., and
K.Prapunkan, 2013. Affecting Factor of
The Mechanical Properties Phenolic/
Fiber Composite, International journal
of Chemical Materials Science and
Engineering vol. 7, no. 10.
Mohamed, A.; Mugamed F.; Gholamian; and A.
R. Zarei, 2013. Performance Analysis of
Composite Propellant Based on HTPB–
DNCB, Journal of Propulsion and Power
vo.l 30, no. 2.
Nair, U.R.; S.N. Asthana; A. Subhananda; and
B.R. Gandhe, 2010. Advances in High
Energy Materials, Defense Science
Journal v 60 no 2, 137-151.
Rafi, A; T. Jayachandran T; and R. Hari, 2010.
Numerical Simulation of Solid Propellant
Casting using Unstructured Finite
Volume Methdod, Proceeding of the 37th
National & 4th intrnatioanl conference
on Fluid Mechanics and Power – India.
Ramesh, K; N. Shekhar; S.S. Jawalkar; and M.
Bikash Bhattacharya, 2012. Development
of a Composite Propellant Formulation
with a High Performance Index Using a
Pressure Casting Technique, Central
European Journal of Energetic
Materials, 9(1), 4958.
Sarner, S.F., 1967. Propellant Chemistry,
Reinhold, New York, 112.
Styborski, J.A; J. Matthew; M.N.S. Scorza; and
M.A. Oehlschlaeger, 2010. Iron
Nanoparticle Additives as Burning Rate
Enhancers in AP/HTPB Composite
Propellants, Propellants Explos,
Pyrotech. 2010, 35, Wiley-VCH, 1-8.
Sutton, G.P., and O. Biblarz, 2001. Rocket
Propulsion Elements, edisi 7, John Wiley
& sons.
Zohari, N; H.K. Mohammad; S.A. Seyedsadjadi,
The Advantages and Shortcomings
of using Nano-sized Energetic Materials,
Central European Journal of Energetic
Materials 10(1), 135-147.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kendra Hartaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


