Potentially Habitable Terrestrial Exoplanets based on the Habitability Index for Transiting Exoplanets (HITE) Value
DOI:
https://doi.org/10.55981/ijoa.2025.5505Keywords:
exoplanet, habitable planet, terrestrial, transitAbstract
In-depth exploration of exoplanet habitability involves a crucial screening process
to identify a subset with the potential for sustaining life. The Habitability Index for Transiting
Exoplanets (HITE) emerges as a vital tool, quantifying a planet’s habitability by
assessing the probability of it having a solid surface and liquid water. Represented by
the symbol H, the index assigns values on a scale from 0 to 1. The closer the value to 1,
the greater the potential for habitability. H integrates parameters derived from transit
data, encompassing orbital period, transit depth, duration, surface gravity, radius, and
effective temperature of the host star. Through the Virtual Planetary Laboratory (VPL),
the calculation of H is executed for exoplanets with terrestrial mass (0.3–10 M⊕) sourced
from the Transiting Exoplanet Survey Satellite (TESS) and K2 missions. The results show
that the exoplanets with the highest H values are TOI-700 d from TESS, with a value of
0.95202. Of the 228 planets examined, around 9.21% are identified as potentially habitable.
References
Abe, Y., Abe-Ouchi, A., Sleep, N. H., & Zahnle, K. J. (2011). Habitable zone limits for dry
planets. Astrobiology, 11(5), 443-460.
Akeson, R. L., Chen, X., Ciardi, D., Crane, M., Good, J., … & Zhang, A. (2013). The NASA
Exoplanet Archive: Data and Tools for Exoplanet Research. Publications of the Astronomical
Society of the Pacific, 125, 990.
Barnes, R., Meadows, V. S., & Evans, N. (2015). Comparative habitability of transiting exoplanets.
The Astrophysical Journal, 814(2), 91.
Barnes, R., Meadows, V. S., & Evans, N. (n.d.). VPL Habitability Index for Transiting Exoplanets.
https://vplapps.astro.washington.edu/hite.php
Betzler, A. S., & Miranda, J. G. (2023). Relation between mass and radius of exoplanets distinguished
by their density. Research in Astronomy and Astrophysics, 23(6), 065005.
Gilbert, E. A., Barclay, T., Schlieder, J. E., Quintana, E. V., Hord, B. J., Kostov, V. B., ... &
Winters, J. G. (2020). The first habitable-zone Earth-sized planet from TESS. I. Validation
of the TOI-700 system. The Astronomical Journal, 160(3), 116.
Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., & Zahnle, K. J.
(2009). Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2(12), 891-896.
Innes, H., Tsai, S. M., & Pierrehumbert, R. T. (2023). The Runaway Greenhouse Effect on
Hycean Worlds. The Astrophysical Journal, 953(2), 168.
Jiang, J. H., Rosen, P. E., Liu, C. X., Wen, Q., & Chen, Y. (2024). Analysis of Habitability
and Stellar Habitable Zones from Observed Exoplanets. Galaxies, 12(6), 86.
Kopparapu, R. K., Ramirez, R., Kasting, J. F., Eymet, V., Robinson, T. D., Mahadevan,
S., Terrien, R. C., Domagal-Goldman, S., Meadows, V., Deshpande, R. (2013). Habitable
Zones Around Main-Sequence Stars: New Estimates. https://arxiv.org/
abs/1301.6674v2
NASA Exoplanet Science Institute. (n.d.). NASA Exoplanet Archive Data. https://exoplanetarchive.
ipac.caltech.edu/
Space Telescope Science Institute. (n.d.). Catalogs: Exoplanet Atmosphere Observability Table.
https://catalogs.mast.stsci.edu/eaot
Pierrehumbert, R. & Gaidos, E. (2011). Hydrogen Greenhouse Planets Beyond the Habitable
Zone. https://arxiv.org/abs/1105.0021v1
Ramirez, R. M. (2018). A more comprehensive habitable zone for finding life on other planets.
Geosciences, 8(8), 280.
Schulze-Makuch, D., Méndez, A., Fairén, A. G., von Paris, P., Turse, C., Boyer, G., Davila, A.
F., de Sousa António, M. R., Catling, D., & Irwin, L. N. (2011). A two-tiered approach
to assessing the habitability of exoplanets. Astrobiology, 11(10), 1041-52.
Stephan, A. P., & Gaudi, B. S. (2023). Exoplanet Nodal Precession Induced by Rapidly Rotating
Stars: Impacts on Transit Probabilities and Biases. The Astrophysical Journal,
950(1), 32.
University of Rochester. (n.d.). A Runaway Greenhouse Effect. https://www.pas.rochester.
edu/~blackman/ast104/vgreenhouse.html
Yustika, S. I., Utama, J. A., Arifin, M., Rusdiana, D. (2021). Karakteristik Eksoplanet Laik
Huni di Sistem Multiplanet. Prosiding Seminar Nasional Fisika 7.0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Achmad Zainur Rozzykin, Claudia Amelia Lomban, Muhammad Isnaenda Ikhsan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


