Potentially Habitable Terrestrial Exoplanets based on the Habitability Index for Transiting Exoplanets (HITE) Value

Authors

  • Achmad Zainur Rozzykin Institut Teknologi Sumatera
  • Claudia Amelia Lomban Institut Teknologi Sumatera
  • Muhammad Isnaenda Ikhsan Institut Teknologi Sumatera

DOI:

https://doi.org/10.55981/ijoa.2025.5505

Keywords:

exoplanet, habitable planet, terrestrial, transit

Abstract

In-depth exploration of exoplanet habitability involves a crucial screening process
to identify a subset with the potential for sustaining life. The Habitability Index for Transiting
Exoplanets (HITE) emerges as a vital tool, quantifying a planet’s habitability by
assessing the probability of it having a solid surface and liquid water. Represented by
the symbol H, the index assigns values on a scale from 0 to 1. The closer the value to 1,
the greater the potential for habitability. H integrates parameters derived from transit
data, encompassing orbital period, transit depth, duration, surface gravity, radius, and
effective temperature of the host star. Through the Virtual Planetary Laboratory (VPL),
the calculation of H is executed for exoplanets with terrestrial mass (0.3–10 M⊕) sourced
from the Transiting Exoplanet Survey Satellite (TESS) and K2 missions. The results show
that the exoplanets with the highest H values are TOI-700 d from TESS, with a value of
0.95202. Of the 228 planets examined, around 9.21% are identified as potentially habitable.

References

Abe, Y., Abe-Ouchi, A., Sleep, N. H., & Zahnle, K. J. (2011). Habitable zone limits for dry

planets. Astrobiology, 11(5), 443-460.

Akeson, R. L., Chen, X., Ciardi, D., Crane, M., Good, J., … & Zhang, A. (2013). The NASA

Exoplanet Archive: Data and Tools for Exoplanet Research. Publications of the Astronomical

Society of the Pacific, 125, 990.

Barnes, R., Meadows, V. S., & Evans, N. (2015). Comparative habitability of transiting exoplanets.

The Astrophysical Journal, 814(2), 91.

Barnes, R., Meadows, V. S., & Evans, N. (n.d.). VPL Habitability Index for Transiting Exoplanets.

https://vplapps.astro.washington.edu/hite.php

Betzler, A. S., & Miranda, J. G. (2023). Relation between mass and radius of exoplanets distinguished

by their density. Research in Astronomy and Astrophysics, 23(6), 065005.

Gilbert, E. A., Barclay, T., Schlieder, J. E., Quintana, E. V., Hord, B. J., Kostov, V. B., ... &

Winters, J. G. (2020). The first habitable-zone Earth-sized planet from TESS. I. Validation

of the TOI-700 system. The Astronomical Journal, 160(3), 116.

Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., & Zahnle, K. J.

(2009). Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2(12), 891-896.

Innes, H., Tsai, S. M., & Pierrehumbert, R. T. (2023). The Runaway Greenhouse Effect on

Hycean Worlds. The Astrophysical Journal, 953(2), 168.

Jiang, J. H., Rosen, P. E., Liu, C. X., Wen, Q., & Chen, Y. (2024). Analysis of Habitability

and Stellar Habitable Zones from Observed Exoplanets. Galaxies, 12(6), 86.

Kopparapu, R. K., Ramirez, R., Kasting, J. F., Eymet, V., Robinson, T. D., Mahadevan,

S., Terrien, R. C., Domagal-Goldman, S., Meadows, V., Deshpande, R. (2013). Habitable

Zones Around Main-Sequence Stars: New Estimates. https://arxiv.org/

abs/1301.6674v2

NASA Exoplanet Science Institute. (n.d.). NASA Exoplanet Archive Data. https://exoplanetarchive.

ipac.caltech.edu/

Space Telescope Science Institute. (n.d.). Catalogs: Exoplanet Atmosphere Observability Table.

https://catalogs.mast.stsci.edu/eaot

Pierrehumbert, R. & Gaidos, E. (2011). Hydrogen Greenhouse Planets Beyond the Habitable

Zone. https://arxiv.org/abs/1105.0021v1

Ramirez, R. M. (2018). A more comprehensive habitable zone for finding life on other planets.

Geosciences, 8(8), 280.

Schulze-Makuch, D., Méndez, A., Fairén, A. G., von Paris, P., Turse, C., Boyer, G., Davila, A.

F., de Sousa António, M. R., Catling, D., & Irwin, L. N. (2011). A two-tiered approach

to assessing the habitability of exoplanets. Astrobiology, 11(10), 1041-52.

Stephan, A. P., & Gaudi, B. S. (2023). Exoplanet Nodal Precession Induced by Rapidly Rotating

Stars: Impacts on Transit Probabilities and Biases. The Astrophysical Journal,

950(1), 32.

University of Rochester. (n.d.). A Runaway Greenhouse Effect. https://www.pas.rochester.

edu/~blackman/ast104/vgreenhouse.html

Yustika, S. I., Utama, J. A., Arifin, M., Rusdiana, D. (2021). Karakteristik Eksoplanet Laik

Huni di Sistem Multiplanet. Prosiding Seminar Nasional Fisika 7.0.

Downloads

Published

05-10-2025

How to Cite

Rozzykin, A. Z., Lomban, C. A., & Ikhsan, M. I. (2025). Potentially Habitable Terrestrial Exoplanets based on the Habitability Index for Transiting Exoplanets (HITE) Value. Indonesian Journal of Aerospace, 23(1), 1–12. https://doi.org/10.55981/ijoa.2025.5505