Effect of Light Intensity on Ammonium Removal and Biomass Growth in Different Levels of Aquaculture Effluent Using Duckweed (Lemna perpusilla)

Authors

  • Agus Waluyo BRIN
  • Kukuh Nirmala
  • Awalina Satya
  • Yuni Puji Hastuti
  • Tjandra Chrismadha
  • Evi Susanti
  • Fajar Sumi Lestari
  • Eva Nafisyah
  • Sugiarti
  • Nasrul Muit BRIN

DOI:

https://doi.org/10.55981/limnotek.2024.6420

Keywords:

duckweed, ammonium removal, aquaculture wastewater, light intensity, shade net

Abstract

Cultivating duckweed in aquaculture effluent offers a viable approach to eliminating contaminants. The duckweed biomass obtained can be utilized for the generation of bioenergy. However, elevated levels of ammonium (NH4+) in aquaculture effluent, combined with variations in light intensity, can hinder biomass formation. The precise mechanisms underlying this inhibition remain incompletely elucidated. The study assessed the efficacy of duckweed (Lemna perpusilla) as a treatment agent for wastewater from catfish farms. The objective was to evaluate the growth response of duckweed and its efficacy in reducing ammonium levels. The research demonstrated that daily light intensity fluctuated using shade nets and that the ammonium concentration of aquaculture wastewater varied according to the age of the fish. The shade nets, which blocked 25% of the sunlight and had an average daily light intensity of 3433.34–15199.56 lux, demonstrated a slightly elevated NH4+ removal efficiency and duckweed productivity of 69.34% and 0.050 kg/m²/day, respectively. However, these values were not statistically significant when compared to conditions without shade nets, which had a removal efficiency of 63.97% and duckweed productivity of 0.042kg/m2/day (P<0.05). The implementation of shade structures that effectively decrease solar exposure by 25% shows promise for enhancing duckweed productivity and optimizing nutrient reduction in wastewater from fish cultivation systems. This approach contributes to the promotion of sustainable integrated aquaculture.

References

Adams BD, Pozo ML, Stewart JJ, Adams WW. 2020. Zeaxanthin and lutein: photoprotectors, anti-inflammatories, and brain food. Molecules 25(16): 3607. DOI: 10.3390/molecules25163607

Ahmadi AW, Dursun S. 2024. Assessing the efficiency and role of duckweed (Lemna minor) in the removal of pollutants from wastewater treatment plant secondary clarifier tanks: a comprehensive review. Central Asian Journal of Water Research 10 (1): 115-125. DOI: 10.29258/CAJWR/2024-R1.v10-1/115-125.eng

Bappenas. 2023. Indonesia Blue Economy Roadmap. National Development Planning Agency-Ministry of National Development Planning

Brini F, Mseddi K, Brestic M, Landi M. 2022. Hormone-mediated plant responses to light quality and quantity. Environmental and Experimental Botany 202: 105026. DOI: 10.1016/j.envexpbot.2022.105026

Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159:567–584. DOI:10.1078/0176-1617-0774

Caicedo JR, Van Der Steen NP, Arce O, Gijzen HJ. 2000. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research 34(15):3829–3835. DOI:10.1016/S0043-1354(00)00128-7

Chrismadha T. Sulawesty F, Awalina, Mardiati Y, Mulyana E, Widoretno MR. 2016. Growth performance of minute duckweed (Lemna perpusilla) in an integrated common carp (Cyprinus carpio) closed recirculation aquaculture. Proceeding of International Conference of Aquaculture Indonesia (ICAI) 2014: 16-26

Chrismadha T, Mulyana E. 2019. Laju konsumsi tumbuhan air mata lele (Lemna perpusilla) oleh ikan nila (Oreochromis sp.) dengan padat tebar berbeda. Limnotek 26(1): 39-46

Chrismadha T, Tanjung LR, Sutrisno. 2021. Use of minute duckweed (Lemna perpusilla) for supplemental feed in catfish (Clarias sp.) culture: determination of the optimal proportion using power sim simulation. E3S Web of Conferences 322, 02015 (2021). DOI: 10.1051/e3sconf/202132202015

Coughlan NE, Walsh E, Ahern R, Burnell G, O’Mahoney R, Kuehnhold H, Jansen MAK. 2022. Flow rate and water depth alter biomass production and phytoremediation capacity of Lemna minor. Plants 2022 (11): 2170. DOI: 10.3390/plants11162170

Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO. 2019. Waste production in aquaculture; source, components and mangements in different culture systems. Aquaculture and Fisheries 4 (2009) 81-88. doi: 10.1016/j.aaf.2018.10.002

De Matos FT, Lapolli FR, Mohedano RA, Fracalossi DM, Bueno GW, Roubach R. 2014. Duckweed bioconversion and fish production in treated domestic wastewater. Journal of Applied Aquaculture 16 (1): 49-59. DOI: 10.1080/10454438.2014.877740.

Devlin M, Brodie J. 2023. Nutrients and eutrophication. Marine pollution monitoring, management, and mitigation. DOI: 10.1007/978-3-031-10127-4

Fahmi MA, Rohman A, Ahsan SA, Firmansyah F, Perdananugraha GM, Rusydi AF. Evaluation of ammonium issues in Indonesian groundwater: Potential sources and removal methods. IOP Conf. Series: Earth and Environmental Science 1201: 012108. DOI:10.1088/1755-1315/1201/1/012108

FAO. 2021. OECD-FAO agricultural outlook 2023-2032. OECD Publishing. Paris DOI: 10.1787/08801ab7-en

Femena PV, Roman B, Brennan RA. 2023. Maximizing duckweed biomass production for food security at low light intensities: Experimental result and an enhanced predictive model. Environmental Challenges. DOI: 10.1016/j.envc.2023.100709

Francis B and Gilman TR. 2019. Light intensity affects leaf morphology in a wild population of Adenostyles alliariae (Asteraceae). Italian Botanist 8:35-45. doi: 10.3897/italianbotanist.8.39393

Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. The Plant Cell 11:937–947.

Harianto E, Supriyono E, Budiardi T, Affandi R, Hadiroseyani Y, Sabilu K. 2021. Water and land efficiency in eel (Anguilla bicolor bicolor) rearing in development of urban aquaculture through vertical aquaculture system. Embrio 2021 - IOP Conference Series: Earth and Environmental Science 1033 (2022) 012013. DOI: 10.1088/1755-1315/1033/1/012013

Henriksson PJG, Belton B, Murshed-e-Jahan K, Rico A. 2018. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1716530115

Huang L, Lu Y, Gao X, Du G, Ma X, Liu M, Guo J, Chen Y. 2013. Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecological Engineering 58:355-362. DOI: 10.1016/j.ecoleng.2013.06.031

Kinidi L, Salleh S. 2017. Phytoremediation of nitrogen as green chemistry for wastewater treatment system. International Journal of Chemical Engineering 2017:1-12. DOI: 10.1155/2017/1961205

KKP [Kementrian Kelautan dan Perikanan]. 2024. https://statistik.kkp.go.id/home.php?m=prod_ikan_prov&i=2#panel-footer-kpda

Korner S, Vermaat JE, Veenstra S. 2003. The capacity of duckweed to treat wastewater. Journal of Environmental Quality 32 (5): 1583-1590

Lanca C, Teo A, Vivagandan A, Htoon HM, Najjar RP, Spiegel DP, Pu SH, Saw SM. 2019. The effects of different outdoor environments, sunglasses, and hats on light levels: implications for myopia prevention. Translational Vision Science and Techology 8(4):7. DOI: 10.1167/tvst.8.4.7

Landolt E. 1986. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), The Family of Lemnaceae—A Monographic Study 2. Geobotanisches Institut ETH; Zürich, Switzerland.

Landolt E, Kandeler R. 1987. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), The family of Lemnaceae-A Monographic Study 4. Geobotanisches Institut ETH; Zürich, Switzerland

Liu Y, Wiren NV. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany 68(10): 2581–2592. DOI: 10.1093/jxb/erx086

Malone CT, Newton A. 2020. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Frontiers in Marine Science. doi: 10.3389/fmars.2020.00670

Megahud JC, Dalumpines SLP. Growth of duckweeds (Lemna minor L.) as affected by light intensity, nutrient solution concentration, and light x nutrient interaction. Philippine Science Letters 14 (01): 119-129

Minich JJ, Michael TP. 2023. A review of using duckweed (Lemnaceae) in fish feeds. Research Square. DOI: 10.21203/rs.3.rs-3340590/v1

Mittler R, Vanderauwera S, Gollery M, Breusegem FV. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9(10): 490-498. DOI: 10.1016/j.tplants.2004.08.009

Mkandawire M dan Dudel EG. 2005. Assignment of Lemna gibba L., (Duckweed) Bioassay for In Situ Ecotoxicity Assessment. Aquatic Ecology 3:151 – 165. DOI: 10.1007/s10452-004-5411-1

Nasr FA, Doma HS, Nassar HF. 2009. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purposes. Environmentalist 29: 270-279. DOI: 10.1007/s10669-008-9188-y

Obiero K, Meulenbroek P, Drexler S, Dagne A, Akoll P, Odong R, Kaunda-Arara B, Waidbacher H. 2019. The contribution of fish to food and nutrition security in eastern Africa: Emerging trends and future outlooks. Sustainability 11(6). doi: 10.3390/su11061636

O’Mahoney R, Coughlan NE, Walsh E, Jansen MAK. 2022. Cultivation of Lemna minor on industry-derived, anaerobically digested, dairy processing wastewater. Plants 11: 3027. DOI: 10.3390/plants11223027

Paolacci S, Stejskal V, Toner d, Jansen MAK. 2022. Integrated multitrophic aquaculture; analyzing contributions of different biological compartments to nutrient removal in a duckweed-based water remediation system. Plants 2022 (11):3103. DOI: 10.3390/plants11223103

Peeters ETHM, van Zuidam JP, van Zuidam BG, van Nes EH, Kosten S, Heuts PGM, Roijackers RMM, Netten JJC, Scheffer M. Changing weather conditions and floating plants in temperate drainage ditches. Journal of Applied Ecology 50: 585-593

Peraturan Pemerintah Republik Indonesia No. 22 Tahun 2021. Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup

Petersen F, Demann J, Restemeyer D, Olfs HW, Westendarp H, Appenroth KJ, Ulbrich A. 2022. Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants 11(8):1010. DOI: 10.3390/plants11081010

Popa R, Moga IC, Rissdorfer M, Ilis MLG, Peterescu G, Craciun N, Matache MG, Covaliu CI, Stoian G. 2017. Duckweed utilization for freshwater conservation (management) in recirculated aquaculture systems. International Journal of Conservation Science 8 (4): 715-7224

Porath D, Pollock J. 1982. Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquatic botany 13:125-131. DOI: 10.1016/0304-3770(82)90046-8

Sarkheil M, Safari O. 2020. Phytoremediation of nutrients from water by aquatic floating duckweed (Lemna minor) in rearing of African cichlid (Labidochromis lividus) fingerlings. Environmental Technology & Innovation 18 (100747): 1 – 11.

Shen M, Yin Z, Xia D, Zhao Q, Kang Y. 2019. Combination of heterotrophic nitrifying bacterium and duckweed (Lemna gibba L.) enhances ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion. The Journal of General and Applied Microbiology 65: 151–160. DOI: 10.2323/jgam.2018.08.002

Stewart JJ, Adams WW, Escobar CM, Pozo ML, Adams BD. 2020. Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Frontiers In Plant Science 11: 480. DOI: 10.3389/fpls.2020.00480

Streicher MD, Reiss H, Reiss K. 2021. Impact of aquaculture and agriculture nutrient sources on macroalgae in a bioassay study. Marine Pollution Bulletin 173 (2021): 113025. DOI: 10.1016/j.marpolbul.2021.113025

Strzalek M, Kufel L. 2021. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrzha (L.) Schleiden. PeerJ 9: e12698. DOI: 10.7717/peerj.12698.

Tian X, Fang Y, Jin Y, Yi Z, Li J, Du A, He K, Huang Y, Zhao H. 2021. Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress. Environmental Pollution 277: 116834. DOI: 10.1016/j.envpol.2021.116834

Vymazal J. 2008. Constructed wetlands, surface flow. Encyclopedia of Ecology 2008:765-776. Academic press. DOI: 10.1016/B978-008045405-4.00079-3

Walsh E, Kuehnhold H, O’Brien S, Coughlan NE, Jansen MAK. 2021. Light intensity alters the phytoremediation potential of Lemna minor. Environmental Science and Pollution Research 28:16394–16407. DOI: 10.1007/s11356-020-11792-y

Wang CY, Sample DJ. 2013. Assessing floating treatment wetlands nutrient removal performance through a first-order kinetics model and statistical inference. Ecological Engineering. 61:292–302.

Wang W, Yang C, Tang X, Gu X, Zhu Q, Pan K, Hu Q, Ma D. 2014. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environmental Science and Pollution Research 21:14202–14210. DOI: 10.1007/s11356-014-3353-2

Wedge RM, Burris JE. 1982. Effects of light and temperature on duckweed photosynthesis. Aquatic Botany 13:133-140. DOI: 10.1016/0304-3770(82)90047-X

Yadav MK, Chauhan RS, Khati A, Yadav NK. Integrated aquaculture systems: a sustainable farming approach. Research Trends in Fisheries and Aquatic Sciences 14 (3): 39-60

Zhao X, Bi G, Harkess RL, Blythe EK. 2016. Effects of Different NH4:NO3 Ratios on Growth and Nutrition Uptake in Iris germanica Immortality. HortScience 51(8): 1045-1049. DOI: 10.21273/HORTSCI.51.8.1045

Duckweed productivity-removal efficiency NH4+ relationship based on shade net variations

Downloads

Published

2024-12-20

Issue

Section

Articles