PROLIFERATION OF OIL PALM (Elaeis guineensis Jacq.) EMBRYOGENIC CALLUS WITH REPEATED SUBCULTURES IN LIQUID MEDIUM
Main Article Content
Abstract
The availability of high-quality seeds is now a necessity. This is due to a government program to replace oil palm trees in smallholder plantations with high quality seeds. An efficient protocol to produce a large number of embryos is needed. To increase the number of embryogenic callus production, the callus proliferation experiment was carried out through suspension culture. This study aimed to examine the proliferation ability of embryogenic callus from three different oil palm clones, in several repeated subcultures. Liquid MS media added with 1 ppm 2.4-D and 0.1 ppm NAA were used. Embryogenic callus was weighed by 0.1 - 0.2 g, transferred into the liquid media, shaking at 60-80 rpm and 27 ºC for 8 weeks without light. Continues subcultures were repeated up to 7 times. The results showed that the growth rate of embryogenic callus increased in the third and fourth subcultures and then decreased in subsequent subcultures. It also revealed that the entire embryogenic callus from the first subculture up to seventh subculture still has the ability to regenerate into new plants. These results indicate that oil palm embryogenic callus can be proliferated by suspension culture with a limit up to the fourth subculture.
Ketersediaan benih kelapa sawit berkualitas saat ini merupakan kebutuhan karena adanya program pemerintah untuk menggantikan tanaman sawit di kebun-kebun petani. Salah satu cara vegetatif yang dapat dilakukan adalah meningkatkan jumlah kalus embriogenik yang dihasilkan melalui pengembangan kultur suspensi. Penelitian ini bertujuan mengkaji kemampuan proliferasi kalus embriogenik dari tiga klon kelapa sawit, pada beberapa kali subkultur yang berulang. Media cair MS dengan penambahan 1 ppm 2,4-D dan 0,1 ppm NAA digunakan untuk memperbanyak 0,1–0,2 g kalus embriogenik, dikocok pada 60-80 rpm dan suhu 27 ºC tanpa cahaya selama 8 minggu. Subkultur berulang dilakukan hingga 7 kali. Hasil percobaan menunjukkan bahwa kemampuan proliferasi kalus dipengaruhi oleh genotip tanaman induk. Rata-rata kalus embriogenik dapat meningkat pada subkultur ke-3 dan ke-4 dan semakin menurun pada subkultur selanjutnya. Kalus embriogenik hasil proliferasi subkultur pertama hingga ke-7 dapat tumbuh menjadi calon tanaman baru. Hasil ini menunjukkan bahwa kalus embriogenik kelapa sawit dapat diperbanyak dengan kultur suspensi pada batas sampai subkultur ke-4.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abohatem MA, Bakil Y, Baaziz M (2017) Plant regeneration from somatic embryogenic suspension cultures of date palm, In Al-Khayri JM, Jain SM, Johnson DV (Eds), Date Palm Biotechnology Protocols: Tissue Culture Applications. Humana Press, New York, pp.203-214. doi: 10.1007/978-1-4939-7156-5
Beigmohamadi M, Movafeghi A, Sharafi A, Jafari S, Danafar H (2019) Cell suspension culture of Plumbago europaea L. towards production of plumbagin. Iran J Biotechnol 17: e2169. doi: 10.21859/ijb.2169
Constantin M, Nchu WA, Godswill NN, Wiendi NMA, Wachjar A, Frank NEG (2015) Induction of oil palm (Elaeis guineensis Jacq. var. Tenera) callogenesis and somatic embryogenesis from young leaf explants. J Appl Biol Biotechnol 3: 004-010. doi: 10.7324/JABB.2015.3402
Directorate General of Estate Crops (2019) Tree crop estate statistics of Indonesia 2018-2020: Palm oil. Secretariate of Directorate General of Estate Crops. Ministry of Agriculture Republic Indonesia, Jakarta
Gomes HT, Bartos PMC, Scherwinski-Pereira JE (2017) Dynamics of morphological and anatomical changes in leaf tissues of an interspecific hybrid of oil palm during acquisition and development of somatic embryogenesis. Plant Cell Tiss Organ Cult 131: 269-282. doi: 10.1007/s11240-017-1282-8
Guillou C, Fillodeau A, Brulard E, Breton D, De Faria Maraschin S, Verdier D, Simon M, Ducos JP (2018) Indirect somatic embryogenesis of Theobroma cacao L. in liquid medium and improvement of embryo-to-plantlet conversion rate. In Vitro Cell Dev Biol Plant 54: 377-391. doi: 10.1007/s11627-018-9909-y
Hajati RJ, Payamnoor V, Bezdi KG, Chashmi NA (2016) Optimization of callus induction and cell suspension culture of Betula pendula Roth for improved production of betulin, betulinic acid, and antioxidant activity. In Vitro Cell Dev.Biol Plant 52: 400-407. doi: 10.1007/s11627-016-9773-6
Hashim AT, Ishak Z, Rosli SK, Ong-Abdullah M, Siew-Eng O, Husri MN, Bakar DA (2018) Oil Palm (Elaeis guineensis Jacq.) Somatic Embryogenesis. In: Jain S, Gupta P (Eds.) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Science vol 85. Springer. doi: 10.1007/978-3-319-79087-9_18
Jayanthi M, Susanthi B, Mohan NM, Mandal PK (2015) In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.). Springerplus 4: 256. doi: 10.1186/s40064-015-1025-4
Karyanti, Rismayanti, Riyadi A, Herliana L, Khairiyah H, Sukarnih T, Rudiyana Y, Setia WW, Rochandi A, Sarman, Sarifudin D (2019) Clonal propagation of oil palm (Elaeis guineensis Jacq.) seeds. Final Report of Collaboration Research with Astra Agro Lestari. Laboratory for Biotechnology, Agency for the Assessment and Application of Technology, Tangerang Selatan
Kochan E, Szymanska G, Grzegorczy-Karolak I, Szymczyk P, Sienkiewicz M (2019) Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties. Acta Soc Bot Pol 88: 3638. doi: 10.5586/asbp.3638
Marbun CLM, Toruan-Marhius N, Reflini, Utomo C, Liwang T (2015) Micropropagation of embryogenic callus of oil palm (Elaeis guineensis Jacq.) using temporary immersion system. Procedia Chem 14: 122-129. doi: 10.1016/j.proche.2015.03.018
Minarsih H, Riyadi I, Sumaryono, Budiani A (2013) Micropropagation of sugarcane (Saccharum officinarum L.) using temporary immersion system. Menara Perkebunan 81: 1-8. doi: 10.22302/iribb.jur.mp.v81i1.53
Ministry of Agriculture RI (2016) Replanting guideline for oil palm plantation. Regulation of the Ministry of Agriculture No. 18/ permentan/KB.330/5/2016. Ministry of Agriculture of the Republic of Indonesia, Jakarta
Ministry of Agriculture RI (2019) regarding Stipulation of Indonesia's Oil Palm Area Coverage. Decision of the Minister of Agriculture of the Republic of Indonesia No. 833/KPTS/SR.020/M/12/2019. Ministry of Agriculture of the Republic of Indonesia, Jakarta
Monteiro TR, Freitas EO, Nogueira GF, Scherwinski-Pereira JE (2018) Assessing the influence of subcultures and liquid medium during somatic embryogenesis and plant regeneration in oil palm (Elaeis guineensis Jacq.). J Hortic Sci Biotechnol 93: 196-203. doi: 10.1080/14620316.2017.1360156
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco cultures. Phys Plant 15(3): 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
Naik PM, Al-Khayri JM (2017) Extraction and estimation of secondary metabolites from date palm cell suspension cultures. Methods Mol Biol 1637: 319-332. doi: 10.1007/978-1-4939-7156-5_26
Naik PM, Al-Khayri JM (2018) Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Cienc Agrotec 42: 464-473. doi: 10.1590/1413-70542018425021118
Naranjo EJ, Fernandez Betin O, Urrea Trujillo AI, Callejas Posada R, Atehortua Garces L (2016) Effect of genotype on the in vitro regeneration of Stevia rebaudiana via somatic embryogenesis. Acta Biol Colomb 21: 87-98. doi: 10.15446/abc.v21n1.47382
Presidential Instruction RI (2019) Termination of granting of new permits and improving management of primary natural forests and peatlands. Presidential Instruction of the Republik of Indonesia No. 5 Tahun 2019. Ministry of State Secretariat of the Republic of Indonesia, Jakarta
Riyadi I, Efendi D, Purwoko BS, Santoso D (2016) Indirect somatic embryogenesis in sago palm (Metroxylon sago Rottb.) using suspension culture and temporary immersion solid media system. J AgroBiogen 12: 37-44. doi: 10.21082/jbio.v12n1.2016.p37-44
Sallets A, Delimoy A, Boutry M (2015) Stable and transient transformation of Artemisia annua suspension cells. Plant Cell Tiss Organ Cult 120: 797-801. doi: 10.1007/s11240-014-0631-0
Wan Nur Syuhada WS, Rasid OA, Parveez GKA (2016) Evaluation on the effects of culture medium on regeneration of oil palm plantlets from immature embryos (IE). J Oil Palm Res 28: 234-239. doi: 10.21894/jopr.2016.2802.12
Weckx S, Inze D, Maene L (2019) Tissue culture of oil palm: Finding the balance between mass propagation and somaclonal variation. Front Plant Sci 10: 722. doi: 10.3389/fpls.2019.00722
Yarra R, Jin L, Zhao Z, Cao H (2019) Progress in tissue culture and genetic transformation of oil palm: An overview. Int J Mol Sci 20: 5353. doi: 10.3390/ijms20215353
Yusnita, Hapsoro D (2011) In Vitro callus induction and embryogenesis of oil palm (Elaeis guineensis Jacq.) from leaf explants. Hayati J Biosci 18: 61-65. doi: 10.4308/hjb.18.2.61
Yusuf NA, Annuar MSM, Khalid N (2013) Physical stress for overproduction of biomass and flavonoids in cell suspension cultures of Boesenbergia rotunda, Acta Physiol Plant 35: 1713-1719. doi: 10.1007/s11738-012-1178-5