THE COMPARISON BETWEEN LOGISTIC REGRESSION AND CONVOLUTIONAL NEURAL NETWORK FOR MULTI-DRUG RESISTANT TUBERCULOSIS PREDICTION

Main Article Content

Albert Widjaja
Satrio Wibowo
Arli Aditya Parikesit

Abstract

Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains that resist at least two first-line anti-TB drugs. This disease presents a major global health challenge, particularly affecting middle to lower income countries where affordable and rapid diagnostic tools are urgently needed. To address this, researchers are exploring the combination of whole genome sequencing and machine learning for drug resistance predictions. Using Mycobacterium tuberculosis genomic data from databases, both Logistic Regression (LR) and Convolutional Neural Network (CNN) models were trained to predict drug resistance. Performance evaluation revealed that CNN slightly outperformed LR in accuracy and specificity for Rifampicin and Pyrazinamide predictions, while LR showed better results for Isoniazid and Ethambutol. In terms of sensitivity, LR demonstrated superior performance for most drugs, except Ethambutol where CNN excelled. Though computational complexity assessment was incomplete due to hardware limitations, both models showed distinct advantages in predicting first-line anti-TB drug resistance.

Article Details

How to Cite
Widjaja, A., Wibowo, S., & Parikesit, A. A. (2025). THE COMPARISON BETWEEN LOGISTIC REGRESSION AND CONVOLUTIONAL NEURAL NETWORK FOR MULTI-DRUG RESISTANT TUBERCULOSIS PREDICTION . Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(1), 31–44. https://doi.org/10.55981/jbbi.2025.9769
Section
Articles

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2016) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distribut-ed Systems

Albaradei, S., Thafar, M., Alsaedi, A., Van Neste, C., Gojobori, T., Essack, M., & Gao, X. (2021). Machine learning and deep learning methods that use omics data for metastasis predic-tion. Computational and Structural Bi-otechnology Journal, 19, 5008–5018. https://doi.org/10.1016/j.csbj.2021.09.001

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., & Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic re-sistance genes from metagenomic da-ta. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0401-z

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Il-lumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Mi-randa A, Alves A, Perdigão J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG (2015) Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Medicine 7:51. https://doi.org/10.1186/s13073-015-0164-0

Colquhoun, D. (2014). An investigation of the false discovery rate and the misin-terpretation of p -values. Royal Socie-ty Open Science, 1(3), 140216. https://doi.org/10.1098/rsos.140216

Concato, J., & Hartigan, J. A. (2016). P val-ues: From suggestion to supersti-tion. Journal of Investigative Medi-cine, 64(7), 1166–1171. https://doi.org/10.1136/jim-2016-000206

Connolly LE, Edelstein PH, Ramakrishnan L (2007) Why Is Long-Term Therapy Required to Cure Tuberculosis? PLoS Med 4:e120. https://doi.org/10.1371/journal.pmed.0040120

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. https://doi.org/10.1093/gigascience/giab008

De Rooij, M., & Weeda, W. (2020). Cross-Validation: a method every psycholo-gist should know. Advances in Meth-ods and Practices in Psychological Science, 3(2), 248–263. https://doi.org/10.1177/2515245919898466

Green AG, Yoon CH, Chen ML, Ektefaie Y, Fina M, Freschi L, Gröschel MI, Ko-hane I, Beam A, Farhat M (2022) A convolutional neural network high-lights mutations relevant to antimicro-bial resistance in Mycobacterium tu-berculosis. Nat Commun 13:3817. https://doi.org/10.1038/s41467-022-31236-0

Gröschel, M. I., Owens, M., Freschi, L., Vargas, R., Marin, M. G., Phelan, J., Iqbal, Z., Dixit, A., & Farhat, M. R. (2021). GenTB: A user-friendly ge-nome-based predictor for tuberculosis resistance powered by machine learn-ing. Genome Medi-cine, 13(1). https://doi.org/10.1186/s13073-021-00953-4

Gupta N (2013) Accuracy, Sensitivity and Specificity Measurement of Various Classification Techniques on Healthcare Data. IOSR-JCE 11:70–73. https://doi.org/10.9790/0661-1157073

Habibzadeh F, Habibzadeh P, Yadollahie M (2016) On determining the most ap-propriate test cut-off value: the case of tests with continuous results. Biochem Med (Zagreb) 26:297–307. https://doi.org/10.11613/BM.2016.034

Hennessy JL, Patterson DA (2011) Com-puter Architecture, Fifth Edition: A Quantitative Approach, 5th edn. Mor-gan Kaufmann Publishers Inc., San Francisco, CA, USA

Hinz T, Navarro-Guerrero N, Magg S, Wermter S (2018) Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks. Int J Comp Intel Appl 17:1850008. https://doi.org/10.1142/S1469026818500086

Jin, C., Jia, C., Hu, W., Xu, H., Shen, Y., & Yue, M. (2023). Predicting antimicro-bial resistance in E. coli with discrimi-native position fused deep learning classifier. Computational and Struc-tural Biotechnology Journal, 23, 559–565. https://doi.org/10.1016/j.csbj.2023.12.041

Kaushik R, Kumar S (2019) Image Segmen-tation Using Convolutional Neural Network. International Journal of Sci-entific & Technology Research

Korthauer, K., Kimes, P. K., Duvallet, C., Reyes, A., Subramanian, A., Teng, M., Shukla, C., Alm, E. J., & Hicks, S. C. (2019). A practical guide to meth-ods controlling false discoveries in computational biology. Genome Biol-ogy, 20(1). https://doi.org/10.1186/s13059-019-1716-1

Koteluk O, Wartecki A, Mazurek S, Kołodziejczak I, Mackiewicz A (2021) How Do Machines Learn? Artificial In-telligence as a New Era in Medicine. J Pers Med 11:32. https://doi.org/10.3390/jpm11010032

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

Li L, Jamieson K, DeSalvo G, Rostamiza-deh A, Talwalkar A (2018) Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

Liu X, Han S, Wang Z, Gelernter J, Yang B-Z (2013) Variant Callers for Next-Generation Sequencing Data: A Comparison Study. PLOS ONE 8:e75619. https://doi.org/10.1371/journal.pone.0075619

Maksum I, Suhaili S, Amalia R, Kamara D, Rachman S, Rachman R (2018) PCR Multipleks untuk Identifikasi Mycobac-terium tuberculosis Resisten terhadap Isoniazid dan Rifampisin pada Galur Lokal Balai Laboratorium Kesehatan Provinsi Jawa Barat. Jurnal Kimia VALENSI 4:107–118. https://doi.org/10.15408/jkv.v4i2.7226

Miotto, P., Tessema, B., Tagliani, E., Chin-delevitch, L., Starks, A. M., Emerson, C., Hanna, D., Kim, P. S., Liwski, R., Zignol, M., Gilpin, C., Niemann, S., Denkinger, C. M., Fleming, J., War-ren, R. M., Crook, D., Posey, J., Gagneux, S., Hoffner, S., . . . Rodwell, T. C. (2017). A standardised method for interpreting the association be-tween mutations and phenotypic drug resistance inMycobacterium tubercu-losis. European Respiratory Jour-nal, 50(6), 1701354. https://doi.org/10.1183/13993003.01354-2017

Nadjib M, Dewi RK, Setiawan E, Miko TY, Putri S, Hadisoemarto PF, Sari ER, Pujiyanto, Martina R, Syamsi LN (2022) Cost and affordability of scal-ing up tuberculosis diagnosis using Xpert MTB/RIF testing in West Java, Indonesia. PLoS One 17:e0264912. https://doi.org/10.1371/journal.pone.0264912

Nalugwa, T., Shete, P. B., Nantale, M., Farr, K., Ojok, C., Ochom, E., Mugabe, F., Joloba, M., Dowdy, D. W., Moore, D. a. J., Davis, J. L., Cattamanchi, A., & Katamba, A. (2020). Challenges with scale-up of GeneXpert MTB/RIF® in Uganda: a health systems perspec-tive. BMC Health Services Re-search, 20(1). https://doi.org/10.1186/s12913-020-4997-x

Nguyen TNA, Anton-Le Berre V, Bañuls A-L, Nguyen TVA (2019) Molecular Di-agnosis of Drug-Resistant

Tuberculosis; A Literature Review. Frontiers in Microbiology 10

Pai, M., & Schito, M. (2015). Tuberculosis Diagnostics in 2015: Landscape,

Priorities, Needs, and Prospects. The Journal of Infectious Diseas-es, 211(suppl_2), S21–S28. https://doi.org/10.1093/infdis/jiu803

Parwati CG, Farid MN, Nasution HS, Basri C, Lolong D, Gebhard A, Tiemersma EW, Pambudi I, Surya A, Houben RMGJ (2020) Estimation of subna-tional tuberculosis burden: generation and application of a new tool in Indo-nesia. Int J Tuberc Lung Dis 24:250–257. https://doi.org/10.5588/ijtld.19.0139

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Pas-sos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2012, January 2). SciKit-Learn: Machine Learning in Python. arXiv.org. https://arxiv.org/abs/1201.0490

Pelletreau S (2022) Desk Review: Pediatric Tuberculosis with a Focus on Indone-sia | UNICEF Indonesia

Phelan JE, O’Sullivan DM, Machado D, Ramos J, Oppong YEA, Campino S, O’Grady J, McNerney R, Hibberd ML, Viveiros M, Huggett JF, Clark TG (2019) Integrating informatics tools and portable sequencing technology for rapid detection of resistance to an-ti-tuberculous drugs. Genome Medi-cine 11:41. https://doi.org/10.1186/s13073-019-0650-x

Schisterman EF, Faraggi D, Reiser B, Hu J (2008) Youden Index and the optimal threshold for markers with mass at ze-ro. Stat Med 27:297–315. https://doi.org/10.1002/sim.2993

Shoaib, M., Shah, B., Sayed, N., Ali, F., Ul-lah, R., & Hussain, I. (2023). Deep learning for plant bioinformatics: an explainable gradient-based approach for disease detection. Frontiers in Plant Sci-ence, 14. https://doi.org/10.3389/fpls.2023.1283235

Simonovska L, Trajcevska M, Mitreski V, Simonovska I (2015) The causes of death among patients with tuberculo-sis. European Respiratory Journal 46

The CRyPTIC Consortium and the 100,000 Genomes Project (2018) Prediction of Susceptibility to First-Line Tuberculo-sis Drugs by DNA Sequencing. New England Journal of Medicine 379:1403–1415. https://doi.org/10.1056/NEJMoa1800474

Vasiliu, A., Saktiawati, A. M. I., Duarte, R., Lange, C., & Cirillo, D. M. (2022). Im-plementing molecular tuberculosis di-agnostic methods in limited-resource and high-burden countries. Breathe, 18(4), 220226. https://doi.org/10.1183/20734735.0226-2022

Verma VK, Verma S (2022) Machine learn-ing applications in healthcare sector: An overview. Materials Today:

Proceedings 57:2144–2147. https://doi.org/10.1016/j.matpr.2021.12.101

Wilimitis, D., & Walsh, C. G. (2023). Practi-cal Considerations and Applied

Examples of Cross-Validation for model development and Evaluation in Health Care: tutorial. JMIR AI, 2, e49023. https://doi.org/10.2196/49023

World Health Organization (2021) Global Tuberculosis Report 2021. World Health Organization

World Health Organization (2018). The use of next-generation sequencing tech-nologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. https://www.who.int/publications/i/item/WHO-CDS-TB-2018.19